Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[9855] Artykuł: On the Jacobian Newton polygon of plane curve singularitiesCzasopismo: Manuscripta Mathematica Tom: 125, Zeszyt: 3, Strony: 309-324ISSN: 0025-2611 Wydawca: SPRINGER, 233 SPRING STREET, NEW YORK, NY 10013 USA Opublikowano: Marzec 2008 Autorzy / Redaktorzy / Twórcy
Grupa MNiSW: Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A) Punkty MNiSW: 15 Klasyfikacja Web of Science: Article Pełny tekst DOI Web of Science YADDA/CEON |
We investigate the Jacobian Newton polygon of plane curve singularities. This invariant was introduced by Teissier in the more general context of hypersurfaces. The Jacobian Newton polygon determines the topological type of a branch (Merle's result) but not of an arbitrary reduced curve (Eggers example). Our main result states that the Jacobian Newton Polygon determines the topological type of a non-degenerate unitangent singularity. The Milnor number, the Lojasiewicz exponent, the Hironaka exponent of maximal contact and the number of tangents are examples of invariants that can be calculated by means of the Jacobian Newton polygon. We show that the number of branches and the Newton number defined by Oka do not have this property.