Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The primary aim of this article is to focus on the alkali-silica reaction (ASR) in mortar
specimens containing coloured waste glass used as an aggregate. Mortar expansion was measured
using the ASTM C 1260 accelerated test procedure until the specimens disintegrated. Special attention
was paid to the microscopic examination of the damaged mortar. Various methods were used for this
purpose, including optical microscopy in reflected and transmitted light with one and two crossed
polarizers. The specimens were also subjected to the scanning electron microscopy observations
with energy dispersive spectroscopy (SEM-EDS). The data obtained from these techniques provided
information on the mechanism of glass-containing mortar degradation due to ASR and also allowed
the comparison of dierent microscopic techniques in terms of the information they can provide on
ASR occurrence.
B I B L I O G R A F I A1. Broekmans M.A.T.M. Structural properties of quartz and their potential role for ASR. Mat. Charact. 2004, 53, 129–140, doi:10.1016/j.matchar.2004.08.010.
2. Kurdowski W. Cement and Concrete Chemistry, Springer: New York, NY, USA 2014.
3. Jensen V. Reclassification of alkali aggregate reaction. In Proceedings of 14th International Conference of Alkali-Aggregate Reaction, Austin, TX, USA, 20–25 May 2012.
4. Holleman A.F., Wyberg E. Lehrbuch der anorganishen Chemia, Walter Gruyter Verlag: Berlin, Germany, New York, NY, USA, 1985.
5. ASTM C441/C441M: Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction
ASTM International: West Conshohocken, PA, USA, 2017.
6. Shin J.-H., Struble L.J., Kirkpatrick R.J. Microstructural changes due to alkali-silica reaction during standard mortar test. Materials 2015, 8, 8292–8303, doi:10.3390/ma8125450.
7. Zapała-Sławeta J., Owsiak Z. Effect of lithium nitrate on the reaction between opal aggregate and sodium and potassium hydroxides in concrete over a long period of time. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 773–778, doi:10.1515/bpasts-2017-0085.
8. Owsiak Z. The effect of delayed ettringite formation and alkali-silica reaction on concrete microstructure. Ceramics-Silikaty 2010, 54, 151–153.
9. Hamoudi A., Khouchaf L., Depecker C., Revel B., Montagne L., Corrdier P. Microstructural evolution of amorphous silica following alkali-silica reaction. J. Non Cryst. Solids 2008, 354, 5074–5078, doi:10.1016/j.jnoncrysol.2008.07.001.
10. Ichikawa, T. Alkali–silica reaction, pessimum effects and pozzolanic effect. Cem. Concr. Res. 2009, 39, 716–726, doi:10.1016/j.cemconres.2009.06.004.
11. Liu J., Yu L., Deng M. Effect of LiNO3 on Expansion of Alkali–Silica Reaction in Rock Prisms and Concrete Microbars Prepared by Sandstone. Materials 2019, 12, doi:10.3390/ma12071150.
12. Czapik, P. Degradation of Glaukonite Sandstone as a Result of Alkali-Silica Reactions in Cement Mortar. Materials 2018, 11, doi:10.3390/ma11060924.
13. Ali B., Quereshi L.A. Influence of glass fiber on mechanical and durability performance of concrete with recycled aggregates. Constr. Build. Mater. 2019, 228, doi:10.1016/j.conbuildmat.2019.116783.
14. Kasagani H., Rao C.B.K. Effect of graded on stress strain behavior of glass fiber reinforced concrete in tension. Constr. Build. Mater. 2018, 183, 592–604, doi:10.1016/j.conbuildmat.2018.06.193.
15. Arriagada C., Navarrette I., Lopez M. Understanding the effect of porosity on the mechanical and thermal performance of glass foam lightweight aggregates and the influence of production factors. Constr. Buildmat 2019, 228, doi:10.1016/j.conbuildmat.2019.116746.
16. Bubeník J., Zach J. The use of foam glass based aggregates for the production of ultra-lightweight porous concrete for the production of noise barrier wall panels. Transp. Res. Procedia 2019, 40, 639–646, doi:10.1016/j.trpro.2019.07.091.
17. Kuśnierz A. Glass Recykling. Prace Instytutu Ceramiki i Materiałów Budowlanych 2010, 3, 22–33.
18. Matos A.M., Sousa-Coutinho J. Durability of mortar using waste glass powder as cement replacement. Constr. Build. Mater. 2012, 36, 205–215, doi:10.1016/j.conbuildmat.2012.04.027.
19. Idir R., Cyr M., Tagnit-Hamou A. Pozzolanic properties of fine and coarse color-mixed glass cullet. Cem. Concr. Compos. 2011, 33, 19–29, doi:10.1016/j.cemconcomp.2010.09.013.
20. Shayan A., Xu A. Value-added utilisation of waste glass in concrete. Cem. Concr. Res. 2004, 34, 81–89, doi:10.1016/S0008-8846(03)00251-5.
21. Tuaum A., Shitote S., Oyawa W. Experimental Study of Self-Compacting Mortar Incorporating Recycled Glass Aggregate. Buildings 2018, 8, doi:10.3390/buildings8020015.
22. Ismail Z.Z., Al-Hashmi E.A. Recycling of waste glass as partial replacement for fine aggregate in concrete. Waste Manag. 2009, 29, 655–659, doi:10.1016/j.wasman.2008.08.012.
23. Topçu İ.B., Canbaz M. Properties of concrete containing waste glass. Cem. Concr. Res. 2004, 34, 267–274, doi:10.1016/j.cemconres.2003.07.003.
24. Park S.B., Lee B.C., Kim J.H. Studies on mechanical properties of concrete containing waste glass aggregate. Cem. Concr. Res. 2004, 34, 2181–2189, doi:10.1016/j.cemconres.2004.02.006.
25. Shao Y., Lefort T., Moras S., Rodriguez D. Studies on concrete containing ground waste glass. Cem. Concr. Res. 2000, 30, 91–100, doi:10.1016/S0008-8846(99)00213-6.
26. Saccani A., Bignozzi M.C., Barbieri L., Lancellotti I., Bursi E. Effect of the chemical composition of different types of recycled glass used as aggregate on the ASR performance of cement mortars. Constr. Build. Mater. 2017, 154, 804–809, doi:10.1016/j.conbuildmat.2017.08.011.
27. Lee G., Ling T.-C., Wong Y.-L., Poon C.-S. Effect of crushed glass cullet size, casting methods and pozzolanic materials on ASR of concrete blocks. Constr. Build. Mater. 2011, 25, 2611–2618, doi:10.1016/j.conbuildmat.2010.12.008.
28. Idir R., Cyr M., Tagnit-Hamou A. Use of fine glass as ASR inhibitor in glass aggregate mortars. Constr. Build. Mater. 2010, 24, 1309–1312, doi:10.1016/j.conbuildmat.2009.12.030.
29. Saccani A., Bignozzi M.C. ASR expansion behavior of recycled glass fine aggregates in concrete. Cem. Concr. Res. 2010, 40, 531–536, doi:10.1016/j.cemconres.2009.09.003.
30. Park S.-B., Lee B.-C. Studies on expansion properties in mortar containing waste glass and fibers. Cem. Concr. Res. 2004, 34, 1145–1152, doi:10.1016/j.cemconres.2003.12.005.
31. Meyer C., Egosi N., Andel C. Concrete with glass as aggregate. In Recycling and Reuse of Glass Cullet
Proceedings of the International Symposium organized by the Concrete Technology Unit and Held at the University of Dundee, Dundee, UK, 19–20 March 2001, Dhir R.K., Limbachiya M.S., Dyer T.D., Eds., Thomas Telford Publishing: London, UK, 2001.
32. Ramachandran V.S. Alkali-aggregate expansion inhibiting admixtures. Cem. Concr. Compos. 1998, 20, 149–161, doi:10.1016/S0958-9465(97)00072-3.
33. Bulteel D., Rafaï N., Degrugilliers P., Garcia-Diaz, E. Petrography study on altered flint aggregate by alkali-silica reaction. Mater. Charact. 2004, 53, 141-154, doi:10.1016/j.matchar.2004.08.004.
34. Hou X., Struble L.J., Kirkpatrik R.J. Formation of ASR gel and the roles of C-S-H and portlandite. Cem. Concr. Res. 2004, 34, 1683-1696, doi:10.1016/j.cemconres.2004.03.026.
35. Moon J., Speziale S., Meral C., Kalkan B., Clark S.M., Monteiro P.J.M. Determination of the elastic properties of amorphous materials: Case study of alkali-silica reaction gel. Cem. Concr. Res. 2013, 54, 55–60, doi:10.1016/j.cemconres.2013.08.012.
36. Maraghechi H., Shafaatian S.-M.-H., Fischer G., Rajabipour F. The role of residual cracks on alkali silica reactivity of recycled glass aggregates. Cem. Concr. Compos. 2012, 34, 41–47, doi:10.1016/j.cemconcomp.2011.07.004.
37. Sims I., Nixon P. RILEM Recommended Test Method AAR-0, Detection of Alkali-Reactivity Potential in Concrete – Outline guide to the use of RILEM methods in assessments of aggregates for potential alkali-reactivity. Mater. Struct. 2003, 36, 472–479.
38. ASTM C 1260-14. Standard Test Method for Potential Reactivity of Aggregates (Mortar-Bar Method)
ASTM International: West Conshohocken, PA, USA, 2014.
39. Mass A.J., Ideker J.H., Juenger M.C.G. Alkali silica reactivity of agglomerated silica fume. Cem. Concr. Res. 2007, 37, 166–174, doi:10.1016/j.cemconres.2006.10.011.
40. Jarmontowicz A., Krzywobłocka-Laurów R. Instrukcja ITB 317: Ocena potencjalnej reaktywności kruszywa żwirowego w stosunku do alkalii na podstawie badań instrumentalnych, Instytut Techniki Budowlanej: Warsaw, Poland, 1993.
41. Leemann A., Le Saout G., Winnefeld F., Rentsh D., Lothenbach B. Alkali-silica reaction: The calcium on silica dissolution and the formation of reaction products. J. Am. Ceram. Soc. 2011, 94, 1243–1249, doi:10.1111/j.1551-2916.2010.04202.x.
42. Boehm-Courjault E., Barbotin S., Leemann A., Scrivener K. Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy. Cem. Concr. Res. 2020, 130, doi:10.1016/j.cemconres.2020.105988.
43. Diamond S., Barneyback R.S., Struble L.J. On the physics and chemistry of alkali-silica reactions. In Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in Concrete, Cape Town, South Africa, 30 March–3 April 1981.
44. Katayama, T. The so-called alkali-carbonate reaction (ACR) – Its mineralogical and geochemical detail, with special reference to ASR. Cem. Concr. Res. 2010, 40, 643–675, doi:10.1016/j.cemconres.2009.09.020.
45. Gregorová M., Všianský D. Geo-visualization of aggregate for AAR prediction and its importance for risk management. In Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), Norway, Trondheim, 16–20 June 2008.
46. Owsiak Z., Czapik P. Interfacial transition zone of cement paste-reactive aggregate in cement-zeolite mortars. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 63, 31–34, doi:10.1515/bpasts-2015-0004.
47. Leemann A., Holzer L. Alkali-aggregate reaction-identifying reactive silicates in complex aggregates by ESEM observation of dissolution features. Cem. Concr. Compos. 2005, 27, 796–801, doi:10.1016/j.cemconcomp.2005.03.007.
48. Fernández-Jiménez A., Puertas F. The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 2002, 32, 1019–1024, doi:10.1016/S0008-8846(01)00745-1.
49. Pignatelli R., Comi C., Monteiro P.J.M. A coupled mechanical and chemical damage model for concrete affected by alkali-silica reaction. Cem. Concr. Res. 2013, 53, 196–210, doi:10.1016/j.cemconres.2013.06.011.
50. Gao X.X., Multon S., Cyr M., Sellier A. Alkali-silica reaction (ASR) expansion, Pessimum effect versus scale effect. Cem. Concr. Res. 2013, 44, 25–33, doi:10.1016/j.cemconres.2012.10.015.
51. Almesfer N., Ingham J. Effect of waste glass on the properties of concrete. J. Mater. Civ. Eng. 2014, 26, doi:10.1061/(ASCE)MT.1943-5533.0001077.
52. Thomas M.D.A., Fournier B., Folliard K.J. Report No. FHWA-HIF-13-019: Alkali-Aggregate Reactivity (AAR) Facts Book
Office of Pavement Technology Federal Highway Administration: Washington, DC, USA, 2013.
53. Jana, D. DEP and ASR in concrete—A systematic approach from petrography. In Proceedings of the Thirtieth Conference on Cement Microscopy, Reno, NV, USA, 20–24 April 2008.
54. Fernandes I., Noronha F., Teles M. Examination of the concrete from an old Portuguese dam: Texture and composition of alkali-silica gel. Mater. Charact. 2007, 58, 1160–1170, doi:10.1016/j.matchar.2007.04.007.
55. Szeląg M., Zegardło B., Andrzejuk W. The use of fragmented, worn-out car side windows as an aggregate for cementitious composites. Materials 2019, 12, doi:10.3390/ma12091467.
56. Tambelli C.E., Schneider J.F., Hasparyk N.P., Monteiro P.J.M. Study of the structure of alkaline-silica reaction gel by high-resolution NMR spectroscopy. J. Non Cryst. Solids 2006, 352, 3429–3436, doi:10.1016/j.jnoncrysol.2006.03.112.
57. Balachandran C., Muñoz J.F., Arnold T. Characterization of alkali silica reaction gels using Raman spectroscopy. Cem. Concr. Res. 2017, 92, 66–74, doi:10.1016/j.cemconres.2016.11.018.
58. Ziemba B., Dziura M. Technologia szkła 1, Arkady Publishing: Warsaw, Poland, 1987.
59. ASTM C227–10. Standard Test Method for Potential Alkali Reactivity of Cement—Aggregate Combinations (Mortar-Bar Method)
ASTM International: West Conshohocken, PA, USA, 2010.