Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[95130] Artykuł:

Porous Structures and their Effect on Thermophysical Properties of Thermal Protection Elements

Czasopismo: Solid State Phenomena   Tom: 291, Strony: 13-20
ISSN:  1662-9779
Opublikowano: 2019
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Anatoliy Pavlenko orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Niezaliczony do "N"Inżynieria środowiska, górnictwo i energetyka252.501.25  
Andrii Cheilytko Niespoza "N" jednostki25.00.00  
Serhii Ilin Niespoza "N" jednostki25.00.00  
Hanna Koshlak WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka252.50.00  

Grupa MNiSW:  Publikacje w czasopismach spoza listy 2019
Punkty MNiSW: 5


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

thermophysical properties of the material  impurities  porous structure  swelling 


Keywords:

thermophysical properties of the material  impurities  porous structure  swelling 



Streszczenie:

The improvement of the thermal insulating material thermophysical characteristics of the thermal protection elements by studying the porous structure is a promising direction of research. The article describes the effects of the porosity and coupling of the porous structure on the thermophysical characteristics of thermal insulating materials.The article uses standard systematized techniques and instruments of scientific research applied in thermophysics. The research methodology of highly-porous material thermophysical properties is based on performance of empirical laboratory investigations of the samples obtained.It was found that for the pore structure effect on the material characteristics it is rational to use the following complex indices: porosity, number of pores, pore position in space, the pore form, pore formation energy. The article shows the effect of the porous structure on the thermophysical characteristics of the material. The complex parameters of the porous structure, which will allow to develop a new method ofcontrol of the porous structure, are proposed.As a result of the experiment planning method, the regression equation of an effective coefficient of thermal conductivity for porous thermal protection structures was developed. It was established that for amore even distribution of the mixture in a volume it is necessary to minimize the size of the dispersed components, thereby increasing the area of their contacts.The experimental method revealed that the moisture evaporation caused the formation of poresinside the clay. The shape of the pores was determined using electron microscope MMP-2P, both on the sample section and surface. The clearest clay has the greatest porosity (no iron oxide and calcium oxide). The pores have a spherical shape in it. The presence of impurities reduces the material porosity due to the increased clay viscosity.




Abstract:

The improvement of the thermal insulating material thermophysical characteristics of the thermal protection elements by studying the porous structure is a promising direction of research. The article describes the effects of the porosity and coupling of the porous structure on the thermophysical characteristics of thermal insulating materials.The article uses standard systematized techniques and instruments of scientific research applied in thermophysics. The research methodology of highly-porous material thermophysical properties is based on performance of empirical laboratory investigations of the samples obtained.It was found that for the pore structure effect on the material characteristics it is rational to use the following complex indices: porosity, number of pores, pore position in space, the pore form, pore formation energy. The article shows the effect of the porous structure on the thermophysical characteristics of the material. The complex parameters of the porous structure, which will allow to develop a new method ofcontrol of the porous structure, are proposed.As a result of the experiment planning method, the regression equation of an effective coefficient of thermal conductivity for porous thermal protection structures was developed. It was established that for amore even distribution of the mixture in a volume it is necessary to minimize the size of the dispersed components, thereby increasing the area of their contacts.The experimental method revealed that the moisture evaporation caused the formation of poresinside the clay. The shape of the pores was determined using electron microscope MMP-2P, both on the sample section and surface. The clearest clay has the greatest porosity (no iron oxide and calcium oxide). The pores have a spherical shape in it. The presence of impurities reduces the material porosity due to the increased clay viscosity.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Jouybari, H.J., Saedodin, S., Zamzamian, A., Nimvari, M. E., & Wongwises, S. (2017). Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study. Renewable Energy, (114), 1407-1418.

DOI: https://doi.org/10.1016/j.renene.2017.07.008

[2] Malvè, M., Bergstrom, D. J., & Chen, X. B. (2018). Modelling the flow and mass transfer in a mechanically stimulated parametric porous scaffold under fluid-structure interaction approach. International Communications in Heat and Mass Transfer, (96), 53-60.

DOI: https://doi.org/10.1016/j.icheatmasstransfer.2018.05.014

[3] Liang, Y., Wu, D., & Fu, R. (2013). Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Scientific reports, (3), 1119.

DOI: https://doi.org/10.1038/srep01119

[4] Säckel, W., & Nieken, U. (2016). Structure Formation within Spray-Dried Droplets
Mathematical Modelling of Spray Polymerisation. In Process-Spray, 89-125.

[5] Lowell, S., & Shields, J. E. (2013). Powder surface area and porosity (Vol. 2). Springer Science and Business Media.

[6] Cheilytko, A.A., Ilin, S.V., & Nosov, M.A. (2017). Creation of effective metallic thermal insulation constructions. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 103-108.

DOI: https://doi.org/10.29202/nvngu

[7] Yatskov, M., Korchyk, N., Budenkova, N., Kyrylyuk, S., & Prorok, O. (2017). Development of technology for processing liquid iron-containing wastes of steel surfaces etching. Eastern European Journal of Advanced Technology, 2(6), 70-77.

DOI: https://doi.org/10.15587/1729-4061.2017.97256

[8] Eom, J. H., Kim, Y. W., & Raju, S. (2013). Processing and properties of macroporous silicon carbide ceramics: A review. Journal of Asian Ceramic Societies, 1(3), 220-242.

DOI: https://doi.org/10.1016/j.jascer.2013.07.003

[9] Sereda, B., Kruglyak, I., Zherebtsov, A., & Belokon, Y. (2011). The influence of deformation process in titan aluminides retrieving by SHS-compaction technologies. Metallurgical and Mining Industry, 3(7), 59-63.

[10] Bogas, J.A., Gomes, M.G., & Real, S. (2015). Capillary absorption of structural lightweight aggregate concrete. Materials and Structures, 48(9), 2869-2883.

DOI: https://doi.org/10.1617/s11527-014-0364-x

[11] Syrodoy, S.V., Kuznetsov, G.V., Zhakharevich, A.V., Gutareva, N.Y., & Salomatov, V.V. (2017). The influence of the structure heterogeneity on the characteristics and conditions of the coal–water fuel particles ignition in high temperature medium. Combustion and Flame, (180), 196-206.

DOI: https://doi.org/10.1016/j.combustflame.2017.02.003

[12] Kuntysh, V.B., Dudarev, V.V., Filatov, S.O., & Korolkova, A.M. (2017). Thermal Conductivity of External Contaminants of Air-Cooled Heat Exchangers. Chemical and Petroleum Engineering, 53(3-4), 244-247.

DOI: https://doi.org/10.1007/s10556-017-0329-3

[13] Biletskyi, V., Horobets, L., Fyk, M., & Al-Sultan, M. (2018). Theoretical background of rock failure at hydraulic seam fracture and after effect analysis. Mining of Mineral Deposits, (12), 45-55.

DOI: https://doi.org/10.15407/mining12.03.045

[14] Cheylitko, A. (2015). The influence of synthesis of the initial mixture and blowing agents on the formation of a porous structure. EasternEuropean Journal of Enterprise Technologies, 5(77), 35-38.

[15] Sereda, B.P., Belykon, K.V., Belykon, Yu.O., & Kruglyak, I. A. (2018). Model of mechanism of catalytic reactions of deep oxidation of carbon monoxide. Mathematical modeling, 1(38), 62-68. 16] Pavlenko, A., Usenko, B., & Koshlak, A. (2014). Thermal conductivity of gas in confined space. Metallurgical and Mining Industry, (2), 20-24.

[17] Pavlenko, A., Koshlak, H., & Usenko, B. (2014) Heat and mass transfer in fluidized layer. Metallurgical and Mining Industry, (6), 96-100.

[18] Hurtov, V.A., & Osaulenko, R.N. (2007). Fizika tverdogo tela dlya inzhenerov.

[19] Andriyanov, D.I., Amosov, A.P., & Samboruk, A.R. (2014). Ispol'zovaniye granulirovaniya v tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza dlya polucheniya poristogo karbida titana. Vestn. Samarskogo gos. tekhnich. un-ta. Ser. Tekhn. nauki, (3), 43.

[20] Smolin, I.Yu., Yeremin, M.O., Makarov, P.V., Buyakova, S.P., Kulkov, S.N., & Yevtushenko, Ye.P. (2013). Chislennoye modelirovaniye mekhanicheskogo povedeniya model'nykh khrupkikh poristykh materialov na mezourovne. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 5(25), 78-90.

[21] Rudobashta, S.P., Zueva, G.A., & Zuev, N.A. (2015). Hygroscopic properties of seeds. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Khimiya i Khimicheskaya Tekhnologiya, 58(1).

DOI: https://doi.org/10.6060/tcct.2017607.5556