Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[94750] Artykuł:

The Influence of a Polymer Powder on the Properties of a Cold-Recycled Mixture with Foamed Bitumen

(Wpływ proszku polimerowego na właściwości recyklowanej mieszanki na zimno z asfaltem spienionym)
Czasopismo: Materials   Tom: 12, Zeszyt: 44, Strony: 1-26
ISSN:  1996-1944
Opublikowano: Grudzień 2019
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Przemysław Buczyński orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport6084.0070.00  
Marek Iwański orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport4056.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

polimer  redyspergowalny proszek polimerowy  asfalt spieniony  recykling  mieszanka na zimno  recyklowana mieszanka na zimno 


Keywords:

polymer  redispersible polymer powder  foamed bitumen  recycling  cold mixtures  cold recycled mixture 



Streszczenie:

W artykule przedstawiono wyniki badań opisujące wpływ modyfikatora w postaci redyspergowalnego proszku polimerowego (RPP) na właściwości recyklowanej mieszanki na zimno z asfaltem spienionym (CRM-FB). Badano właściwości fizyczne: nasiąkliwość wagowa (nw), gęstość objętościowa – w stanie nasyconym, powierzchniowo suchym (SSD) (ρbssd), zawartość wolnej przestrzeni (Vm), właściwości mechaniczne: wytrzymałość na pośrednie rozciąganie (ITSDRY), wytrzymałość na pośrednie rozciąganie po oddziaływaniu wody (ITSWET), wytrzymałość na pośrednie rozciąganie po oddziaływaniu wody i mrozu (ITSWRW+M), moduł dynamiczny w układzie badawczym DTC-CY (E* ) oraz ocena oddziaływania czynników klimatycznych: oddziaływania wody - wskaźnik (TSR), oddziaływanie wody i mrozu - wskaźnik (WRW+M). Jako modyfikator zastosowano następujące proszki polimerowe RPP: (VA-VeoVA) kopolimer octan winylu - ester winylowy kwasu wersenowego (P1), (VA-VeoVa-Ac) kopolimer octan winylu - ester winylowy kwasu wersenowego-akrylany (P2), (EVA) kopolimer octan winylowo-etylenowy (P3) oraz (VA/VV/E/Ac) kopolimer octan winylu - ester winylowy kwasu wersenowego-etylen-akrylany (P4). Ilość modyfikatora (RPP) w składzie recyklowanej mieszanki na zimno z asfaltem spienionym ustalono na równą 3% i była ona równa ilości cementu portlandzkiego klasy I 42,5R. Jako lepiszcze w CRM-FB zastosowano asfalt spieniony, który powstał ze spienienia asfaltu drogowego o przedziale penetracji 50/70. Ilość asfaltu spienionego w składzie CRM-FB była równa 2,5%. W badaniach jako punkt odniesienia zastosowano mieszankę referencyjną, w której składzie nie zastosowano modyfikatora polimerowego RPP.
Stwierdzono, że obecność RPP w składzie CRM-FB powoduje poprawę urabialności mieszanki co przekłada się tym samym na zmniejszenie ilości cykli zagęszczania, mniejszą energię, do uzyskania tożsamej zawartości wolnej przestrzeni jak w mieszance referencyjnej. Jednocześnie modyfikator RPP powoduje znaczący wzrost kohezji (ITSDRY) recyklowanej mieszanki na zimno z asfaltem spienionym nie poddanej procesowi kondycjonowania. Wzrost wytrzymałości kształtuje się na poziomie od 40% do 70% zależnie od rodzaju zastosowanego rodzaju modyfikatora w składzie CRM-FB. Niekorzystne zjawisko zaobserwowano w zakresie oddziaływania wody oraz interakcji wody i mrozu, w zakresie wytrzymałości na pośrednie rozciąganie, dla której spadek jest większy niż dopuszczalny graniczny poziom 30%. Korzystny wpływ oddziaływania modyfikatora stwierdzono w zakresie modułu dynamicznego E*. W niskich temperaturach nie zaobserwowano zmiany modułu dynamicznego natomiast w wysokich zaobserwowano jego spadek.




Abstract:

The paper investigates the influence of redispersible polymer powder (RPP) on the physical and mechanical properties of a cold‐recycled mixture with foamed bitumen (CRM‐FB). Four types of RPP with a varied chemical base were used: VA‐VeoVA, VA‐VeoVa‐Ac, EVA and VA/VV/E/Ac. The polymer powder‐modified cold recycled mixture with foamed bitumen, (P)CRM‐FB, was composed of 45.8% reclaimed asphalt pavement (RAP), 45.8% natural aggregate (VA), 3.0% Portland cement CEM I 42,5R, 3.0% foamed bitumen 50/70 and 3.0% RPP, all dosed by weight. The reference mixture, (R)CRM‐FB, served as a reference point for comparison. It was found that RPP improved the workability of the CRM‐FB mixture. This results in a reduced number of compaction cycles and lower energy needed to obtain the air void content as in the reference mixture. In addition, the RPP modifier markedly increased the CRM‐FB mixture cohesion (ITSDRY) and strength, by approximately 40–70%, depending on the RPP used. These findings are particularly important for CRM‐FB mixtures designed for road bases. The present investigations confirmed the improvement of the CRM‐FB mixture parameters after the modification with RPP, regardless of the powder type used.



B   I   B   L   I   O   G   R   A   F   I   A
1. Mazurek, G.
Iwanski, M. Optimisation of the innovative hydraulic binder composition for its versatile use in recycled road base layer. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 032044.
2. Kukiełka, J.
Bańkowski, W. The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Constr. Build. Mater. 2019, 226, 759–766.
3. Graziani, A.
Mignini, C.
Bocci, E.
Bocci, M. Complex Modulus Testing and Rheological Modeling of Cold-Recycled Mixs. J. Test. Eval. 2020, 48, 20180905.
4. Kuchiishi, A.K.
Santos Antão, C.C.D.
Vasconcelos, K.
Bernucci, L.L.B. Influence of viscoelastic properties of cold recycled asphalt mixs on pavement response by means of temperature instrumentation. Road Mater. Pavement Des. 2019, 20, S710–S724.
5. Chomicz-Kowalska, A.
Gardziejczyk, W.
Iwański, M.M. Moisture resistance and compactability of asphalt concrete produced in half-warm mix asphalt technology with foamed bitumen. Constr. Build. Mater. 2016, 126, 108–118.
6. Wasilewska, M.
Gardziejczyk, W.
Gierasimiuk, P. Comparison of measurement methods used for evaluation the skid resistance of road pavements in Poland—case study. Int. J. Pavement Eng. 2018, 1–7, doi:10.1080/10298436.2018.1562188.
7. Bocci, M.
Grilli, A.
Cardone, F.
Graziani, A. A study on the mechanical behaviour of cement–bitumen treated materials. Constr. Build. Mater. 2011, 25, 773–778.
8. Niazi, Y.
Jalili, M. Effect of Portland cement and lime additives on properties of cold in-place recycled mixs with asphalt emulsion. Constr. Build. Mater. 2009, 23, 1338–1343.
9. Buczyński, P. The Frost Resistance of Recycled Cold Mixes with Foamed Bitumen and Different Types of Road Binders. Procedia Eng. 2016, 161, 54–59.
10. Buczyński, P.
Iwański, M. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032042.
11. Ameri, M.
Behnood, A. Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Constr. Build. Mater. 2012, 26, 475–480.
12. Bańkowski, W. Evaluation of Fatigue Life of Asphalt Concrete Mixtures with Reclaimed Asphalt Pavement. Appl. Sci. 2018, 8, 469.
13. Czapik, P.
Zapała-Sławeta, J.
Owsiak, Z.
Stępień, P. Hydration of cement by-pass dust. Constr. Build. Mater. 2020, 231, 117139.
14. Dołżycki, B.
Jaskuła, P. Review and evaluation of cold recycling with bitumen emulsion and cement for rehabilitation of old pavements. J. Traffic Transp. Eng. 2019, 6, 311–323.
15. Buczyński, P.
Iwański, M. Fatigue Life Comparison of Recycled Cold Mixes with Foamed Bitumen and with Bitumen Emulsion. Procedia Eng. 2017, 172, 135–142.
16. Mazurek, G.
Iwański, M. Relaxation Modulus of SMA with Polymer Modified and Highly Polymer Modified Bitumen. Procedia Eng. 2017, 172, 731–738.
17. Radziszewski, P.
Sarnowski, M.
Pokorski, P.
Kowalski, K.J.
Król, J. High temperature properties of modified bituminous binders produced in Poland. MATEC Web Conf. 2019, 262, 05011.
18. Zofka, A.
Błażejowski, K. Machine Learning Technique for Interpretation of Infrared Spectra Measured on Polymer Modified Binders. In RILEM 252-CMB Symposium
Poulikakos, L.D., Cannone Falchetto, A., Wistuba, M.P., Hofko, B., Porot, L., Di Benedetto, H., Eds.
Springer International Publishing: Cham, Germanny, 2019
Volume 20, pp. 281–286, ISBN 978-3-030-00475–0.
19. Shu, B.
Wu, S.
Pang, L.
Javilla, B. The Utilization of Multiple-Walled Carbon Nanotubes in Polymer Modified Bitumen. Mater. 2017, 10, 416.
20. Łukowski, P. Material Modification in Concrete
Ass. Of Concrete Producers: Cracow, Poland, 2016
ISBN 978-83-61331-22-3. (In Polish)
21. Kim, H.-J.
Park, J.-Y.
Suh, H.-W.
Cho, B.-Y.
Park, W.-J.
Bae, S.-C. Mechanical Degradation and Thermal Decomposition of Ethylene-Vinyl Acetate (EVA) Polymer-Modified Cement Mortar (PCM) Exposed to High-Temperature. Sustain. 2019, 11, 500.
22. Gutarowska, B.
Kotynia, R.
Bieliński, D.
Anyszka, R.
Wręczycki, J.
Piotrowska, M.
Koziróg, A.
Berłowska, J.
Dziugan, P. New Sulfur Organic Polymer-Concrete Composites Containing Waste Materials: Mechanical Characteristics and Resistance to Biocorrosion. Mater. 2019, 12, 2602.
23. Shen, Y.
Liu, B.
Lv, J.
Shen, M. Mechanical Properties and Resistance to Acid Corrosion of Polymer Concrete Incorporating Ceramsite, Fly Ash and Glass Fibers. Mater. 2019, 12, 2441.
24. AkzoNobel E ELOTEX Global Product Selection Guide. Available online: http://www.elotex.com/pdf_docs/ELOTEX%20Product%20Selection%20Guide%20SA%202014_en.pdf (accessed on 16 December 2019).
25. Buczynski, P.
Iwanski, M. Rheological properties of mineral-cement mix with foamed bitumen with the addition of redispersible polymer powder. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 032013.
26. Arpagaus, C.
Schafroth, N.
Meur, M. Laboratory scale spray-drying of lactose: A review. Tuberculosis 2010, 3, 4.
27. Ma, H.
Tian, Y.
Li, Z. Interactions between Organic and Inorganic Phases in PA- and PU/PA-Modified-Cement-Based Materials. J. Mater. Civ. Eng. 2011, 23, 1412–1421.
28. Czarnecki, L. Chemia w Budownictwie
Arkady: Warszawa, Poland, 1995.
29. Chen, X.
Matteucci, M.E.
Lo, C.Y.
Johnston, K.P.
Williams, R.O. Flocculation of Polymer Stabilized Nanocrystal Suspensions to Produce Redispersible Powders. Drug Dev. Ind. Pharm. 2009, 35, 283–296.
30. Toledo-Madrid, K.
Gallardo-Velázquez, T.
Osorio-Revilla, G. Microencapsulation of Purple Cactus Pear Fruit (Opuntia ficus indica) Extract by the Combined Method W/O/W Double Emulsion-Spray Drying and Conventional Spray Drying: A Comparative Study. Process. 2018, 6, 189.
31. European Standard: EN 12697-3:2013-10. Bituminous mixtures- Test methods for hot mix asphit: Bitumen recovery: Rotary evaporator. Available online: https://infostore.saiglobal.com/preview/is/en/2013/i.s.en12697-3-2013.pdf?sku=1636542 (accessed on 16 December 2019).
32. European Standard: EN 12591. Bitumen and bituminous binders- Specifications for paving grade bitumens. Available online: https://infostore.saiglobal.com/preview/98698395372.pdf?sku=858114_saig_nsai_nsai_2041347 (accessed on 16 December 2019).
33. Wirtgen Cold Recycling Technology. Available online: http://media.wirtgen-group.com/media/02_wirtgen/infomaterial_1/kaltrecycler/kaltrecycling_technologie/kaltrecycling_handbuch/Cold_recycling_Manual_EN.pdf (accessed on 16 December 2019).
34. Iwański, M.
Chomicz-Kowalska, A.
Maciejewski, K. Application of synthetic wax for improvement of foamed bitumen parameters. Constr. Build. Mater. 2015, 83, 62–69.
35. Iwański, M.
Mazurek, G.
Buczyński, P. Bitumen Foaming Optimisation Process on the Basis of Rheological Properties. Mater. 2018, 11, 1854.
36. European Standard: EN 197-1. Cement: Composition, specifications and conformity criteria for common cements. Available online: http://www.rucem.ru/yabbfiles/Attachments/EN-197-1.pdf (accessed on 16 December 2019).
37. Piłat, J.
Radziszewski, P. Nawierzchnie Asfaltowe: Podręcznik Akademicki
Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2010
ISBN 978-83-206-1759-7.
38. European Standard: EN 13286-2. Unbound and hydraulically bound mixtures- Test methods for laboratory reference density and water content- Proctor compaction. Available online: https://www.sis.se/api/document/preview/75508/ (accessed on 16 December 2019).
39. European Standard: EN 12697-30. Bituminous mixtures- Test methods- Specimen preparation by impact compactor. Available online: https://www.sis.se/api/document/preview/80009154/ (accessed on 16 December 2019).
40. European Standard: EN 12697-26. Bituminous mixtures- Test methods- Stiffness. Available online: https://www.sis.se/api/document/preview/80004874/ (accessed on 16 December 2019).
41. European Standard: EN 12697-31. Bituminous mixtures- Test methods for hot mix asphalt- Specimen preparation by gyratory compactor. Available online: https://www.sis.se/api/document/preview/80010373/ (accessed on 16 December 2019).
42. Godenzoni, C.
Graziani, A.
Perraton, D. Complex modulus characterisation of cold-recycled mixtures with foamed bitumen and different contents of reclaimed asphalt. Road Mater. Pavement Des. 2017, 18, 130–150.
43. Iwański, M.
Chomicz-Kowalska, A.
Buczyński, P.
Mazurek, G.
Cholewińska, M.
Iwański, M.M.
Ramiączek, P.
Maciejewski, K. Procedury Projektowania Oraz Wytyczne Stosowania Materiałów Odpadowych i z Recyklingu do Technologii Wytwarzania Mieszanek Metodą na Zimno z Asfaltem Spienionym (MCAS)
Politechnika Świętokrzyska: Kielce, Poland, 2018.
44. European Standard: EN 12697-6. Bituminous mixtures- Test methods for hot mix asphalt- Determination of bulk density of bituminous specimens. Available online: https://www.sis.se/api/document/preview/86181/ (accessed on 16 December 2019).
45. European Standard: EN 12697-8. Bituminous mixtures- Test methods- Determination of void characteristics of bituminous specimens. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=11&cad=rja&uact=8&ved=2ahUKEwj0wPGa57vmAhUYfnAKHf6yAkY4ChAWMAB6BAgFEAI&url=https%3A%2F%2Filnas.services-publics.lu%2Fecnor%2FdownloadPreview.action%3FdocumentReference%3D223450&usg=AOvVaw2dnfLdfcOHjn7eMkhV_wZm (accessed on 16 December 2019).
46. European Standard: EN 12697-23. Bituminous mixtures- Test methods- Determination of the indirect tensile strength of bituminous specimens. Available online: https://www.sis.se/api/document/preview/8029788/ (accessed on 16 December 2019).
47. Wirtgen Group Podręcznik recyklingu na zimno. Available online: https://www.wirtgen.de. (accessed on 16 December 2019).
48. Aashto, T. Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage
AASHTO Provisional Standards: Washington, DC, USA, 2014.
49. Jaskula, P.
Judycki, J. Durability of Asphalt Concrete Subjected to Deteriorating Effects of Water and Frost. J. Perform. Constr. Facil. 2016, 30, C4014004.
50. Buczyński, P.
Iwański, M. Complex modulus change within the linear viscoelastic region of the mineral-cement mix with foamed bitumen. Constr. Build. Mater. 2018, 172, 52–62.
51. Iwański, M.
Chomicz-Kowalska, A. Evaluation of the effect of using foamed bitumen and bitumen emulsion in cold recycling technology. In Sustainability, Eco-efficiency, and Conservation in Transportation Infrastructure Asset Management
Losa, M., Papagiannakis, T., Eds.
CRC Press: ‎Boca Raton, FL, USA, 2014
pp. 69–76, ISBN 978-1-138-00147-3.
52. Gandi, A.
Cardenas, A.
Sow, D.
Carter, A.
Perraton, D. Study of the impact of the compaction and curing temperature on the behavior of cold bituminous recycled materials. J. Traffic Transp. Eng. 2019, 6, 349–358.
53. Grice, J.W.
Iwasaki, M. A Truly Multivariate Approach to Manova. AMR. 2009, 12, 199.
54. Hair, J.F. Ed. Multivariate Data Analysis, 6th ed.
Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006
ISBN 978-0-13-032929-5.
55. Montgomery, D.C. Design and Analysis of Experiments
8th ed.
John Wiley & Sons, Inc: Hoboken, NJ, USA, 2013
ISBN 978-1-118-14692-7.
56. Buczyński, P. Rehabilitation reliability of the road pavement structure with recycled base course with foamed bitumen. IOP Conf. Ser. Mater. Sci. Eng. 2018, 356, 012016.