Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[93590] Artykuł:

Permeability Coefficient of Low Permeable Soils as a Single-Variable Function of Soil Parameter

Czasopismo: Water   Tom: 11, Zeszyt: 2500, Strony: 1-21
ISSN:  2073-4441
Opublikowano: Listopad 2019
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Tomasz Kozłowski orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka5050.00100.00  
Agata Ludynia orcid logo WiŚGiEKatedra Geotechniki, Geomatyki i Gospodarki Odpadami*Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka5050.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst    
Słowa kluczowe:

współczynnik filtracji  grunty spoiste  wskaźnik plastyczności  wypukłość cząstki  wskaźnik porowatości  średnica porów 


Keywords:

permeability coefficient  cohesive soils  Darcianity of flow  plasticity index  convexity of particles  void ratio  pore diameter 



Abstract:

Based on the results of experimental studies concerning the filtration coefficient, the
Darcianity of the observed flows for eight cohesive soils at four hydraulic gradients was analyzed.
It is observed that linear dependence of flow velocity on hydraulic gradient is an approximation
only, and it is the worse the more cohesive a given soil is. Despite this, Darcy’s law can be a correct
approximation of the empirical relationship between hydraulic gradient and the flow velocity, also
in very cohesive soils. A statistical analysis was carried out to identify correlation between soil
properties and permeability coefficient. For each soil, 109 parameters were analyzed, among others
applying mercury intrusion porosimetry, scanning electron microscopy, dynamic image analysis,
and laser diffraction. Ultimately, three single-variable models best fitted to the experimental data
were found, using the plasticity index IP as the independent variable, the average pore diameter DP,
and the convexity of silt fraction particles. All model parameters are statistically significant at p <
0.05. Comparison with reference multi-variable models showed that the best fit for experimental
data is observed by the model with the plasticity index, while the results suggest low usability of
single-variable models with structural parameters.



B   I   B   L   I   O   G   R   A   F   I   A
Hamdi, N.
Della, M.
Srasra, E. Experimental study of the permeability of clays from the potential sites for
acid effluent storage. Elsevier 2005, 185, 523–534.
2. Rowe, R.K. Long-term performance of contaminant barrier systems. Geotechnique 2005, 55, 631–677.
3. Le, T.D.
Moyne, C.
Marcio, A.
Murad, M.A. A three-scale model for ionic solute transport in swelling
Water 2019, 11, 2500 20 of 21
clays incorporating ion–ion correlation effects. Adv. Water Resour. 2015, 75, 31–52.
4. Galán, E.
Aparicio, P. Experimental study on the role of clays as sealing materials in the geological storage
of carbon dioxide. Appl. Clay Sci. 2014, 87, 22–27.
5. Montes, G.
Duplay, J.
Martinem, L.
Mendoza, C. Swelling-shrinkage kinetics of MX80 bentonite. Appl.
Clay Sci. 2003, 22, 279–293.
6. Wang, C.C.
Juang, L.C.
Lee, C.K.
Hsu, T.C.
Lee, J.F. Effects of exchanged surfactant cations on the pore
structure and adsorption characteristics of montmorillonite. J. Colloid Interface Sci. 2004, 280, 27–35.
7. Tao, Y.
Wen, X.D.
Li, J.
Yang, L. Theoretical and experimental investigations on the structures of purified
clay and acid-activated clay. Appl. Surf. Sci. 2006, 252, 6154–6161.
8. Bergaya, F.
Lagaly, G. Surface modification of clay minerals. Appl. Clay Sci. 2001, 19, 1–30.
9. Allen, A.R. Attenuation landfills—The Future in Landfilling. 2000.
http://ros.edu.pl/images/roczniki/archive/pp_2000_017.pdf (accessed on 15 July 2019).
10. Philip, L.-F.L.
Liggett, J.A. Boundary Solutions to Two Problems in Porous Media. J. Hydraul. Div. 1979,
105, 171–183.
11. Berilgen, S.A.
Berilgen, M.M.
Ozaydin, I.K. Compression and permeability relationships in high water
content clays. Appl. Clay Sci. 2006, 31, 249–261.
12. Romero, E.
Gens, A.
Lloret, A. Water permeability, water retention and microstructure of unsaturated
compacted Boom clay. Eng. Geol. 1999, 54, 117–127.
13. Usyarov, O.G. Experimental study of small-scale spatial variation in filtration coefficient using tracer
method. Colloid J. 2003, 65, 100–104.
14. Tuller, M.
Or, D. Hydraulic functions for swelling soils: Pore scale considerations, Soil Hydrological
Properties and Processes and their Variability in Space and Time. J. Hydrol. 2003, 272, 50–71.
15. Carrier, W.D. Goodbye, Hazen
Hello, Kozeny-Carman. J. Geotech. Geoenviron. Eng. 2003, 129, 1054–1056.
16. Tavenas, F.
Jean, P.
Leblond, P.
Leroueil, S. The permeability of natural clays. Part II: Permeability
characteristics. Can. Geotech. J. 1983, 20, 645–660.
17. Carrier, W.F.
Beckman, J.F. Correlation between index tests and the properties of remoulded clays.
Geotechnique 1984, 34, 211–228.
18. Mesri, G.
Feng, T.W.
Ali, S.
Hayat, T.M. Permeability Characteristics of Soft Clays. In Proceedings of the
13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, 5–10
January 1994
pp. 187–192.
19. Dolinar, B. Predicting the hydraulic conductivity of saturated clays using plasticity-value correlations.
Appl. Clay Sci. 2009, 45, 90–94.
20. Nisihda, Y.
Nakagawa, S. Water permeability and plastic index of soils. Int. Assoc. Sci. Hydrol. 1970, 89,
573–578.
21. PN-B-04481:1988. Building Soils. Tests of Soil Samples
ISO: Geneva, Switzerland, 1988.
22. PN-EN ISO 14688.Geotechnical Investigation and Testing. Identification and Classification of Soil. Part 1, 2
ISO:
Geneva, Switzerland, 2017.
23. Wdowska, M.K.
Lipiński, M.J. Evaluation of Permeability of Man Made Soil by Means of Laboratory Tests.
In Scientific Review Engineering and Environmental Studies of WAU
Warsaw University of Life Sciences:
Warsaw, Poland, 2005
pp. 50–59.
24. Head, K.H. Manual of Soil Laboratory Testing. Effective Stress Tests, 2nd ed.
John Wiley & Sons Ltd.: West
Sussex, UK, 1998
Volume 3, pp. 40–60.
25. Head, K.H.
Epps, R. Manual of Soil Laboratory Testing. Permeability, Shear Strength and Compressibility Test,
3rd ed.
Whittles Publishing: Caithness, Scotland, 2011
Volume 2, pp. 24–86.
26. BS 1377: Part 6: 1990 British Standard Methods of Test for Soils for Civil Engineering Purposes. Part 6.
Consolidation and Permeability Tests in Hydraulic Cells and with Pore Pressure Measurement
British Standards
Institution: London, UK, 1990.
27. BS 1377: Part 8: 1990 British Standard Methods of Test for Soils for Civil Engineering Purposes. Part 8. Shear
Strength Tests (Effective Stress)
British Standards Institution: London, UK
. John Wiley & Sons, Ltd.:
Hoboken, NJ, USA, 2001.
28. PKN-CEN ISO/TS 17892-9. Geotechnical Investigation and Testing. Laboratory Testing of Soil. Part 9:
Consolidated Triaxial Compression Tests on Water-Saturated Soils
ISO: Geneva, Switzerland, 2009.
29. PKN-CEN ISO/TS 17892-11. Geotechnical Investigation and Testing. Laboratory Testing of Soil. Part 11:
Determination of Permeability by Constant and Falling Head
ISO: Geneva, Switzerland, 2009.
Water 2019, 11, 2500 21 of 21
30. Carpenter, G.W.
Stephenson, R.W. Permeability testing in the triaxial cell. Geotech. Test. J. 1986, 9, 3–9.
31. Skempton, A.W. The pore pressure coefficients A and B. Can. Geotech. J. 1954, 4, 143–147.
32. Olson, E. Particle Shape Factors and Their Use in Image Analysis–Part 1: Theory. J. GXP Compliance 2011,
15, 85–96.
33. Rotenberg, B.
Marry, V.
Salanne, M.
Jardat, M.
Turq, P. Multiscale modelling of transport in clays from
the molecular to the sample scale. C. R. Geosci. 2014, 346, 298–306.