Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[92680] Rozdział: An analysis of evolutionary algorithms for multiobjective optimization of structure and learning of fuzzy cognitive maps based on multidimensional medical data.w książce: Theory and Practice of Natural Computing 8th International Conference, TPNC 2019, Kingston, ON, Canada, December 9–11, 2019, ProceedingsISBN: 978-3-030-34499-3 Wydawca: Springer Opublikowano: 2019 Seria wydawnicza: Lecture Notes in Computer Science Liczba stron: 12 Liczba arkuszy wydawniczych: 0.50 Autorzy / Redaktorzy / Twórcy Grupa MNiSW: Autorstwo rozdziału w monografii z listy wydawnictw 2019 Punkty MNiSW: 20 ![]() ![]() Keywords: Fuzzy cognitive maps  Multiobjective optimization  Evolutionary algorithms  Multidimensional medical data.  |
The paper concerns the use of evolutionary algorithms to solve the problem of multiobjective optimization and learning of fuzzy cognitive maps (FCMs) on the basis of multidimensional medical data related to diabetes. The aim of this research study is an automatic construction of a collection of FCM models based on various criteria depending on the structure of the model and forecasting capabilities. The simulation analysis was performed with the use of the developed multiobjective Individually Directional Evolutionary Algorithm. Experiments show that the collection of fuzzy cognitive maps, in which each element is built on the basis of particular patient data, allows us to receive higher forecasting accuracy compared to the standard approach. Moreover, by appropriate aggregation of these collections we can also obtain satisfactory accuracy of forecasts for the new patient.