Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[89870] Artykuł:

Electrochemical Diagnostics of Sprayed Fiber-Reinforced Concrete Corrosion

(Diagnostyka korozji fibrobetonu natryskowego metodą elektrochemiczną)
Czasopismo: MDPI Applied Sciences   Tom: 9, Zeszyt: 18, Strony: 1-15
ISSN:  2076-3417
Opublikowano: Wrzesień 2019
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wioletta Raczkiewicz orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Niespoza "N" jednostkiInżynieria lądowa, geodezja i transport6767.00.00  
Paweł Grzegorz Kossakowski orcid logo WBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****Takzaliczony do "N"Inżynieria lądowa, geodezja i transport3333.00100.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Słowa kluczowe:

Fibrobeton  torkret  korozja zbrojenia  jednoczesne działanie chlorków i mrozu  semi-nieniszcząca galwanostatyczna metoda badawcza  pomiary skurczu  baadanie wytrzymałości na ściskanie  mikroskopia skaningowa  analiza EDS 


Keywords:

steel fiber reinforced concrete  shotcrete  reinforcement corrosion  simultaneous action of chlorides and frost  semi non-destructive galvanostatic pulse method  shrinkage measurement  compressive strength test  scanning microscopy  EDS analysis 



Abstract:

Sprayed fiber-reinforced concrete is used in construction for the execution and repair of reinforced concrete elements. It is believed that the addition of steel fibers is most effective, due to their parameters and low costs. Some researchers, however, suggest that the addition of steel fibers can contribute to the initiation of corrosion of the main reinforcement. In consideration of the differences of opinion on the corrosion resistance of sprayed fiber-reinforced concrete, it has become necessary to analyze this issue. The article presents comparative studies of corrosion assessments of the main reinforcement in specimens made of ordinary concrete and concrete with steel fibers. The tests were performed using a semi non-destructive galvanostatic pulse method, which allows location of the areas of corrosion and estimation of the reinforcement corrosion activity. In order to initiate the corrosion processes the specimens were subjected to freezing cycles in NaCl solution. In addition, the shrinkage and compressive strength of specimens were measured, and the observation of specimen structure under a scanning microscope was performed. It was found that galvanostatic pulse method allowed estimation of the reinforcement corrosion progress. The corrosion of the main reinforcement in steel fiber reinforced concrete specimens was less advanced than in the specimens without fibers.



B   I   B   L   I   O   G   R   A   F   I   A
PN-EN 14487-1:2007 Sprayed Concrete–Part 1: Definitions Requirements and Compliance
Polish Committee for Standardization: Warsaw, Poland, 2007.
PN-EN 14487-2:2007 Sprayed Concrete–Part 2: Execution
Polish Committee for Standardization: Warsaw, Poland, 2007.
Słowek, G.
Majchrzak, W. Shotcrete in repairs of concrete structures. In Proceedings of the XXV International Conference on Structural Failures, Międzyzdroje, Poland, 24–27 May 2011
pp. 1175–1182. (In Polish). [Google Scholar]
Wang, J.
Niu, D.
Wang, Y.
Wang, B. Durability performance of brine-exposed shotcrete in saltlake environment. Constr. Build. Mater. 2018, 188, 520–536. [Google Scholar] [CrossRef]
Galan, I.
Baldermann, A.
Kusterle, W.
Dietzel, M.
Mittermayr, F. Durability of shotcrete for underground support- Review and update. Constr. Build. Mater. 2019, 202, 465–493. [Google Scholar] [CrossRef]
Zych, T. Modern Shotcrete–the Ability to Shape Structural Elements and Architectural Forms
Technical Transactions. Architecture
Krakow University of Technology Publisher: Krakow, Poland, 2010
Volume 107/8-A, pp. 371–386. (In Polish) [Google Scholar]
Jasiczak, J.
Mikołajczak, P. Technology of Concrete Modified with Admixtures and Additives: Overview of Domestic and Foreign Trends
Poznan University of Technology Publisher: Poznań, Poland, 1997. (In Polish) [Google Scholar]
Yan, X.
Liu, L.
Zhang, J.
Li, Y. Experimental Study on Basic Mechanical Properties of Steel Fiber-Reinforced Siliceous Wet Shotcrete. Adv. Mater. Sci. Eng. 2018, 4, 1–8. [Google Scholar]
Chen, W. Design and specification of fiber reinforced shotcrete for underground supports. In Book Series: Proceedings and Monographs in Engineering Water and Earth Sciences, Proceedings of the North American Tunneling Conference 2006, Chicago, IL, USA, 10–15 June 2006
CRC Press: Boca Raton, FL, USA, 2006
pp. 331–335. [Google Scholar]
Brandt, A.M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 2008, 86, 3–9. [Google Scholar] [CrossRef]
Lee, M.K.
Barr, B.I.G. Strength and fracture properties of industrially prepared steel fibre reinforced concrete. Cem. Concr. Compos. 2003, 25, 321–332. [Google Scholar] [CrossRef]
Song, P.S.
Hwang, S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
Brandt, A.M. Cement Based Composites: Materials Mechanical Properties and Performance
Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
Jamroży, Z. Fiber reinforced concrete for underground constructions. Min. Geoengin. 2003, 27, 331–335. (In Polish) [Google Scholar]
Skarżyński, L.
Suchorzewski, J. Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography. Constr. Build. Mater. 2018, 183, 283–299. [Google Scholar] [CrossRef]
Glinicki, M.A. Testing of macro-fibres reinforced concrete for industrial floors. Cem. Wapno Beton 2008, 13, 184–195. [Google Scholar]
Alsharie, H. Applications and Prospects of Fiber Reinforced Concrete in Industrial Floors. Open J. Civ. Eng. 2015, 5, 185–189. [Google Scholar] [CrossRef]
Karwowska, J.
Łapko, A. The usability of using modern fiber reinforced composites in building constructions. Civ. Environ. Eng. 2011, 2, 41–46. (In Polish) [Google Scholar]
Raczkiewicz, W. Effect of concrete addition of selected micro-fibers on the reinforcing bars corrosion in the reinforced concrete specimens. Adv. Mater. Sci. 2016, 16, 38–46. [Google Scholar] [CrossRef]
Zych, T. Study on water permeability, frost damage and de-icing salt scaling of hybrid fibre reinforced concretes. In Proceedings of the 11th International Symposium on Brittle Matrix Composites (BMC), Warsaw, Poland, 28–30 September 2015
pp. 239–250. [Google Scholar]
CEN. PN-EN 1992-1-1:2008 Eurocode 2: Design of Concrete Structures
General Rules and Rules for Buildings
CEN: Brussels, Belgium, 2008. [Google Scholar]
Ye, H.
Jin, N. Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: A review and perspective. Comput. Concr. 2019, 23, 107–119. [Google Scholar]
Wang, Y.
Liu, Ch.
Li, Q.
Wu, L. Chloride ion concentration distribution characteristics within concrete covering-layer considering the reinforcement bar presence. Ocean Eng. 2019, 173, 608–616. [Google Scholar] [CrossRef]
Hajkova, K.
Smilauer, V.
Jendele, L.
Cervenka, J. Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Eng. Struct. 2018, 174, 768–777. [Google Scholar] [CrossRef]
Grzmil, W.
Raczkiewicz, W. Evaluation of the effect of cement type on the carbonation of concrete and the corrosion of reinforcement in reinforced concrete samples. Cem. Wapno Beton 2017, 22, 311–319. [Google Scholar]
Otieno, M.
Ikotun, J.
Ballim, Y. Experimental investigations on the influence of cover depth and concrete quality on time to cover cracking due to carbonation-induced corrosion of steel in RC structures in an urban, inland environment. Constr. Build. Mater. 2019, 198, 172–181. [Google Scholar] [CrossRef]
Benitez, P.
Rodrigues, F.
Talukdar, S.
Sergio, G.
Humberto, V.
Enrico, S. Analysis of correlation between real degradation data and a carbonation model for concrete structures. Cem. Concr. Compos. 2019, 95, 247–259. [Google Scholar] [CrossRef]
Montemor, M.F.
Simoes, A.M.
Ferreira, M.G.S. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques. Cem. Concr. Compos. 2003, 25, 491–502. [Google Scholar] [CrossRef]
Raczkiewicz, W. Influence of the air-entraining agent in the concrete coating on the reinforcement corrosion process in case of simultaneous action of chlorides and frost. Adv. Mater. Sci. 2018, 18, 13–19. [Google Scholar] [CrossRef]
Wang, J.
Niu, D.
He, H. Frost durability and stress-strain relationship of lining shotcrete in cold environment. Constr. Build. Mater. 2019, 198, 58–69. [Google Scholar] [CrossRef]
PN-EN 14488-1: 2008 Testing Sprayed Concrete—Part 1: Sampling Fresh and Hardened Concrete
Polish Committee for Standardization: Warsaw, Poland, 2008.
PN-EN 14488-2: 2007 Testing Sprayed Concrete—Part 2: Compressive Strength of Young Sprayed Concrete
Polish Committee for Standardization: Warsaw, Poland, 2007.
PN-EN 14488-3: 2008 Testing Sprayed Concrete—Part 3: Flexural Strengths (First Peak, Ultimate and Residual) of Fibre Reinforced Beam Specimens
Polish Committee for Standardization: Warsaw, Poland, 2008.
PN-EN 14488-4:2008 Testing Sprayed Concrete—Part 4: Bond Strength of Cores by Direct Tension
Polish Committee for Standardization: Warsaw, Poland, 2008.
PN-EN 14488-5:2008 Testing Sprayed Concrete—Part 5: Determination of Energy Absorption Capacity of Fibre Reinforced Slab Specimens
Polish Committee for Standardization: Warsaw, Poland, 2008.
PN-EN 14488-6:2008 Testing Sprayed Concrete—Part 6: Thickness of Concrete on a Substrate
Polish Committee for Standardization: Warsaw, Poland, 2008.
PN-EN 14488-7:2008 Testing Sprayed Concrete—Part 7: Fibre Content of Fibre Reinforced Concrete
Polish Committee for Standardization: Warsaw, Poland, 2008.
Szweda, Z.
Jaśniok, T.
Jaśniok, M. Evaluation of the effectiveness of electrochemical chloride extraction from concrete on the basis of testing reinforcement polarization and chloride concentration. Corros. Prot. 2018, 61, 3–9. [Google Scholar]
Jaśniok, M.
Jaśniok, T. Measurements on corrosion rate of reinforcing steel under various environmental conditions, using an insulator to delimit the polarized area. In Proceedings of the 9th International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures (AMCM), Gliwice, Poland, 5–7 June 2017. [Google Scholar]
Raczkiewicz, W.
Wójcicki, A. Evaluation of effectiveness of concrete coat as a steel bars protection in the structure-galvanostatic pulse method. In Proceedings of the 26th International Conference on Metallurgy and Materials, Brno, Czech Republic, 24–26 May 2017. [Google Scholar]
Brodnan, M.
Kotes, P.
Bahleda, F.
Šebök, M.
Kučera, M.
Kubissa, W. Using non-destructive methods for measurement of reinforcement corrosion in practice. Corros. Prot. 2017, 60, 55–58. [Google Scholar]
Brodnan, M.
Kotes, P.
Vanerek, J.
Drochytka, R. Corrosion determination of reinforcement using the electrical resistance method. Mater. Tehnol. 2017, 51, 85–93. [Google Scholar] [CrossRef]
GalvaPulse. Available online: http://www.germann.org/TestSystems/GalvaPulse/GalvaPulse.pdf (accessed on 20 March 2014).
PN-EN 206-1: 2003 Concrete—Part 1: Specification Performanc Production and Conformity
Polish Committee for Standardization: Warsaw, Poland, 2003.
PN-EN 12390-3:2002 Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens
Polish Committee for Standardization: Warsaw, Poland, 2003.