Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The microstructure and mechanical properties of open-cell metal foams have long been studied from various angles. The materials discussed
in this paper were fabricated using an unconventional sintering method and their properties are unique. An important part of the process is
reduction of Fe(III) oxide, acting as a foaming agent and a space holder. Four powder mixtures were analysed: ASC100.29, ASC100.29 + C,
DISTALOY SE and DISTALOY SE + C. The aim of the tests, performed with a specially developed setup, was to determine the impact energy
absorption capacity of the Fe-based foams. From the results, it is clear that the metal foams can be used in many applications, including
lightweight structures, filters, heat exchangers and energy-absorbing systems.
B I B L I O G R A F I AAshby, M.F. (1983). The mechanical properties of cellular
solids. Metallurgical Transactions: A, vol. 14, no. 9, p. 1755-
1769, DOI:10.1007/BF02645546.
[2] van de Witte, P., Dijkstra, P.J., van den Berg, J.W.A., Feijen,
J. (1996). Phase separation processes in polymer solutions
in relation to membrane formation. Journal of Membrane
Science, vol. 117, no. 1-2, p. 1-31, DOI:10.1016/0376-
7388(96)00088-9.
[3] Cao, J.-H., Zhu, B-K. Xu, Y.-Y. (2006). Structure and ionic
conductivity of porous polymer electrolytes based on
PVDF-HFP copolymer membranes. Journal of Membrane
Science, vol. 281, no. 1-2, p. 446-453, DOI:10.1016/j.
memsci.2006.04.013.
[4] Banhart, J. (2013). Light-metal foams—History of innovation
and technological challenges. Advanced Engineering
Materials, vol. 15, no. 3, DOI:10.1002/adem.201200217.
[5] Oriňáková, R., Andrej Oriňák, A., Markušová Bučková,
L., Giretová, M., Medvecký, L., Evelína Labbanczová, E.,
Kupková, M., Monika Hrubovčáková, M., Koval, K. (2013). Iron
based degradable foam structures for potential orthopedic
applications. International Journal of Electrochemical Science,
vol. 8, p. 12451-12465, DOI:10.1515/pmp-2016-0008.
[6] Brothers, A.H., Scheunemann, R., DeFouw, J.D., Dunand, D.C.
(2005). Processing and structure of open-celled amorphous
metal foams. Scripta Materialia, vol. 52, no. 4, p. 335-339,
DOI:10.1016/j.scriptamat.2004.10.002.
[7] Arwade, R.S., & Hajjar, J., Schafer, B., Moradi, M., Smith, B.,
Szyniszewski, S. (2011). Steel foam material processing,
properties, and potential structural applications. Structural
Materials and Mechanics, Proceedings of the NSF Engineering
Research and Innovation Conference, DOI:10.1016/j.
jcsr.2011.10.028.
[8] Mutulu, I., Oktay, E. (2011). Processing and properties of
highly porous 17-4 PH stainless steel. Powder Metallurgy
and Metal Ceramics, vol. 50, no. 1-2, p. 73-82, DOI:10.1007/
s11106-011-9305-1.
[9] Jee, C.S.Y., Guo, Z.X., Evans, J.R.G., Özgüven, N. (2000).
Preparation of high porosity metal foams. Metallurgical
and Materials Transactions B, vol. 31, no. 6, p. 1345-1352,
DOI:10.1007/s11663-000-0021-3.
[10] Bekoz, N., Oktay, E. (2013). Mechanical properties of low alloy
steel foams: Dependency on porosity and pore size. Materials
Science and Engineering: A, vol. 576, p. 82-90, DOI:10.1016/j.
msea.2013.04.009.
[11] Murakami, T., Ohara, K., Narushima, T., Ouchi, C. (2007).
Development of a new method for manufacturing iron foam
using gasses generated by reduction of iron oxide. Materials
Transactions, vol. 48, no. 11, p. 2937–2944, DOI:10.2320/
matertrans.MRA2007127.
[12] Park, C., Nutt, S.R. (2001). Effects of process parameters on
steel foam synthesis. Materials Science and Engineering:
A, vol. 297, no. 1-2, p. 62-68, DOI:10.1016/S0921-
5093(00)01265-X.
[13] Żórawski, W., Chatys, R., Depczyński, W. (2008). A Method for
Producing Porous Structures, Patent PL 199720 B1, Patent
Office of the Republic of Poland, Warszawa. (in Polish)
[14] Depczyński, W. (2014). Sintering of copper layers with
a controlled porous structure. METAL 23rd International
Conference on Metallurgy and Materials, p. 1219-1224.
[15] Wójcik, T.M. (2012). Heat transfer enhancement and surface
thermo stabilization for pool boiling on porous structures. EPJ
Web of Conferences, Experimental Fluid Mechanics, vol. 25,
art. no. 01100, DOI: 10.1051/epjconf/20122501100.
Kujime, T., Hyun, S.-K., Nakajima, H. (2006). Fabrication
of lotus – type porous carbon steel by the continuous
zone melting and its mechanical properties. Metallurgical
and Materials Transactions A, vol. 37, no. 2, p. 393–398,
DOI:10.1007/s11661-006-0009-y.
[17] Saadatfar, M., Garcia-Moreno, F., Hutzler, S., Sheppard, A.P.,
Knackstedt, M.A., Banhart, J., Weaire, D. (2009). Imaging of
metallic foams using X-ray micro-CT. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, vol. 344, no. 1-3,
p. 107-012, DOI:10.1016/j.colsurfa.2009.01.008.
[18] Depczyński, W. (2014). Investigating porosity of sintering
porous copper structure with 3D micro-focus X-ray computed
tomography (μCT). Journal of Achievements in Materials and
Manufacturing Engineering, vol. 66, no. 2, p. 67-72.
[19] Maire, É, Adrien, J., Petit, C. (2014). Structural characterization
of solid foams. Comptes Rendus Physique, vol. 15, no. 8-9, p.
674-682, DOI:10.1016/j.crhy.2014.09.001.
[20] Depczyński, W., Kazała, R., Ludwinek, K., Jedynak, K. (2016).
Modelling and Microstructural characterization of sintered
metallic porous materials. Materials, vol. 9, no. 7, art. no. 567,
DOI:10.3390/ma9070567.
[21] Rabei, A., Vendra, L., Reese, N., Young, N., Neville, B.P. (2006).
Processing and characterization of a new composite metal
foam. Materials Transactions, vol. 47, no. 9, p. 2148–2153,
DOI:10.2320/matertrans.47.2148.
[22] Marx, J., Portanova, M., Rabiei, A. (2018). A study on
blast and fragment resistance of composite metal
foams through experimental and modeling approaches.
Composite Structures, vol. 194, p. 652-661, DOI:10.1016/j.
compstruct.2018.03.075.
[23] Garcia-Avila, M., Portanova, M., Rabiej, A. (2014). Ballistic
performance of a composite metal foam-ceramic armor
system. Procedia Materials Science, vol. 4, p. 151-156,
DOI:10.1016/j.mspro.2014.07.571.
[24] Garcia-Avila, M., Portanova, M. Rabiej, A. (2015). Ballistic
performance of a composite metal foam. Composite
Structures, vol. 125, p. 202-211, DOI:10.1016/j.
compstruct.2015.01.031.
[25] Depczynski, W., Miłek, T., Nowakowski, Ł. (2017).
Experimental comparison between upsetting characteristics
of porous components prepared by Fe-based sintering
technology. IOP Conference Series-Materials Science and
Engineering, vol. 179, art. no. 012015, DOI:10.1088/1757-
899X/179/1/012015.
[26] Rabiei, A., Garcia-Avila, M. (2013). Effect of Various
parameters on properties of composite steel foams under
variety of loading rates. Materials Science & Engineering: A,
vol. 564, p. 539-547, DOI:10.1016/j.msea.2012.11.108.
[27] Alvandi-Tabrizi, Y., Whisler, D.A., Kim, H., Rabiei, A. (2015).
High strain rate behavior of composite metal foams.
Materials Science and Engineering: A, vol. 631, p. 248-257,
DOI:10.1016/j.msea.2015.02.027.