Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[8911] Artykuł:

Influence of anisotropy on the energy release rate GI for highly orthotropic materials

(Wpływ anizotropii na współczynnik uwalniania energii GI dla materiałów wysokoortotropowych)
Czasopismo: Journal of Theoretical and Applied Mechanics   Tom: 45, Zeszyt: 4, Strony: 739-752
ISSN:  1429-2955
Opublikowano: 2007
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Kossakowski orcid logoWBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****1006.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 6


Pełny tekstPełny tekst     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

odporność na pękanie  drewno sosnowe  materiały wysokoortropowe  współczynnik uwalniania energii GI 


Keywords:

fracture toughness  pinewood  highly orthotropic materials  energy release rate GI 



Streszczenie:

W artykule przedstawiono wyniki analizy numerycznej dotyczącej współczynnika uwalniania energii GI dla materiałów wysokoortotropowych takich jak kompozyty, laminaty czy drewno. Współczynnik GI obliczano przy użyciu programu Adina v. 8.1 opartego na metodzie elementów skończonych (MES). Określając wpływ anizotropii na GI, przyjmowano różne modele materiałowe. Podczas analizy użyto dwuwymiarowych (2D) i trójwymiarowych (3D) modeli numerycznych próbek podwójnie wspornikowych (ang. Double Cantilever Beam - DCB) o różnych proporcjach długości pęknięcia do grubości elementu. Zauważono, że im te proporcje są mniejsze, tym większe są różnice pomiędzy współczynnikami GI obliczanymi przy założeniu izotropowego i anizotropowych modeli materiałowych (transwersalnie izotropowych i ortotropowych). Dlatego też analiza pękania czy odporności na pękanie powinna być oparta na modelach transwersalnie izotropowych lub ortotropowych oraz powinna być uwzględniana anizotropia materiału.




Abstract:

The paper presents results of a numerical analysis concerning the energy release rate, GI, for highly orthotropic materials such as composites, laminates or wood. The values of GI were calculated using the Adina v. 8.1 Finite Element Method (FEM) program. Different material models were considered to establish the influence of anisotropy on GI. Two-dimensional (2D) and three-dimensional (3D) isotropic and anisotropic models were employed to study the performance of a Double Cantilever Beam (DCB) with various crack length-to-thickness ratios. It was reported that the smaller the ratio, the bigger the difference between the energy release rates GI calculated for the isotropic and anisotropic (transversal isotropic and orthotropic) material models. Thus, it is important that a fracture or fracture toughness analysis should be based on the transversal isotropie and orthotropic models and it should take into account anisotropy.



B   I   B   L   I   O   G   R   A   F   I   A
1. ADINA, 1999, Theory andModelling Guide. Volume I: ADINA, ADINA System Online Manuals, Report ARD 99-7
2. Ando K., Ohta M., 1995, Relationships between the morphology of microfractures of wood and the acoustic emission characteristics, Mokuzai Gakkaishi, 41, 640-646
3. Ando K., Sato K., Fushitani M., 1992, Fracture toughness and acoustic emission characteristics of wood II. Effects of grain angle, Mokuzai Gakkaishi, 38, 342-349
4. Atack D., May W.D., Morris E.L., Sproule R.N., 1961, The energy of tensile and cleavage fracture of black spruce, Tappi, 44, 555-567
5. Bodig J., Goodman J.R., 1973, Prediction of elastic parameters for wood, Wood Science, 5, 249-264
6. Bowie O.L., Freese C.E., 1972, Central crack in plane orthotropic rectangular sheet, Journal of Fracture Mechanics, 8, 49-58
7. Cook T.S., Rau C.A. Jr., 1974, A critical rewiev of anisotropic fracture mechanics, In: Prospects of Fracture Mechanics, Sih, van Elst, and Broek, Edit., 509-523
8. DeBaise G.R., Porter A.W., Pentoney R.E., 1966, Morphology and mechanics of wood fracture, Materials Research and Standards, 6, 493-499
9. Ghandi K.R., 1972, Analysis of an inclined crack centrally placed in an orthotropic rectangular plate, Journal of Strain Analysis, 7, 157-163
10. Haber R.B., Koh H.M., 1985, Explicit Expressions for Energy Release Rates Using Virtual Crack Extensions, International Journal for Numerical Methods in Engineering, 21, 301-315
11. Hellen T.K., 1975, On the method of virtual crack extensions, International Journal of Numerical Methods in Engineering, 9, 187-207
12. Johnson J.A., 1973, Crack initiation in wood plates,Wood Science, 6, 151-158
13. Kossakowski P.G., 2004, An Analysis of Mixed Mode Fracture Toughness of Pinewood Beam Elements, PhD. Thesis, Faculty of Civil and Environmental Engineering, Kielce University of Technology, Kielce
14. Mandel J.F., McGarry F.J., Wann S.S., Im J., 1974, Stress intensity factors for anisotropic fracture test specimens of several geometries, Journal of Composite Materials, 8, 106-116
15. Nikishkov G.P., Vaynshtok V.A., 1980, Metod virtualnogo rosta treshiny dlja otredelenija koeffitsientov intensivnosti naprijazenij KI i KII, Problemy Procznosti, 6, 26-30
16. Parks D.M., 1977, The virtual crack extension method for nonlinear material behavior, Computer Methods in Applied Mechanics and Engineering, 12, 353-364
17. Patton-Mallory M., Cramer S.M., 1987, Fracture mechanics: a tool for predicting wood component strength, Forest Products Journal, 37, 39-47
18. Petterson R., Bodig J., 1983, Prediction of fracture toughness of conifers, Wood and Fiber Science, 15, 302-316
19. PN-EN 338:1999 Structural timber - Strength classes
20. PN-EN 380:1998 Timber structures - Test methods - General principles for static load testing
21. PN-EN 384:1999 Structural timber - Determination of characteristic values of mechanical properties and density
22. PN-EN 408:1998 Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties
23. Porter A.W., 1964, On the mechanics of fracture in wood, Forest Products Journal, 14, 325-331
24. Reiterer A., Stanzl-Tschegg S.E., Tschegg E.K., 2000, Mode I fracture and acoustic emission of softwood and hardwood, Wood Science and Technology, 34, 417-430
25. Seweryn A., 1998, Numerical methods for calculation of stress intensity factors, 17-th Symposium of Fatigue of Materials and Structures, Bydgoszcz-Pieczyska, 301-308
26. Schniewind A.P., Lyon D.E., 1973, A fracture mechanics approach to the tensile strength perpendicular to grain of dimension lumber, Wood Science and Technology, 7, 45-59
27. Schniewind A.P., Centeno J.C., 1973, Fracture toughness and duration of load factor I. Six principal systems of crack propagation and the duration factor for cracks propagating parallel to grain, Wood and Fiber, 5, 152-159
28. Schniewind A.P., 1977, Fracture toughness and duration of load factor II. Duration factor for cracks propagating perpendicular-to-grain,Wood and Fiber, 9, 216-226
29. Stanzl-Tschegg S.E., Tan D.M., Tschegg E.K., 1995, New splitting method for wood fracture characterization, Wood Science and Technology, 29, 31-50
30. Stanzl-Tschegg S.E., Tan D.M., Tschegg E.K., 1996, Fracture resistance to the crack propagation in wood, International Journal of Fracture, 75, 347- 356
31. Tomin M., 1971, Influence of wood orthotropy on basic equations of linear fracture mechanics, Drevarsky Vyskum, 16, 219-230
32. Tomin M., 1972, Influence of anisotropy on fracture toughness of wood, Wood Science, 5, 118-121
33. Walsh P.F., 1972, Linear fracture mechanics in orthotropic materials, Engineering Fracture Mechanics, 5, 533-541
34. Williams J.G., Birch M.W., 1976, Mixed mode fracture in anisotropic media, Cracks and Fracture, ASTM 601, 125-137
35. Wu E.M., 1967, Application of fracture mechanics to anisotropic plates, Journal of Applied Mechanics, 34, 967-974
36. Yeh B., Schniewind A.P., 1992, Elasto-plastic fracture mechanics of wood using the J-integral method, Wood and Fiber Science, 24, 364-376