Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Streszczenie: Zagadnienia związane z pomiarami i oceną odchyłek kulistości nie są uregulowane w aktualnych dokumentach normalizacyjnych. Poza maszynami współrzędnościowymi nie ma również na rynku systemów do pomiaru odchyłek kształtu elementów kulistych. W artykule przedstawiono opisane w literaturze metody pomiaru i oceny odchyłek kulistości oraz perspektywy ich zastosowania w warunkach przemysłowych.
Abstract: Problems relating to measurements and evaluation of sphericity deviations are not described in contemporary standardization documents. Apart from coordinate measuring machines, in global market there are no commercially available systems allowing such measurements. The paper presents methods and systems for measurements of sphericity deviations that are described in the scientific literature as well as a prospective of their application under industrial conditions.
B I B L I O G R A F I A1. Kanada T. “Estimation of sphericity by means of statistical processing for roundness of spherical parts”. Precision Engineering. 20, 2 (1997): s. 117–122.
2. Janecki D., Stępień K., Adamczak S. “Problem of profile matching in sphericity measurements by the radial method”. Metrology and Measurement Systems. 19, 4 (2012): s. 703–714.
3. anecki D., Stępień K., Adamczak S. “Sphericity measurements by the radial method: I. Mathematical fundamentals”. Measurement Science Technology. 27, 1 (2016): s. 015005.
4. Janecki D., Stępień K., Adamczak S. “Sphericity measurements by the radial method: II. Experimental verification”. Measurement Science Technology. 27, 1 (2016): s. 015006.
5. Gleason E., Schwenke H. “A spindless instrument for the roundness measurement of precision spheres”. Precision Engineering. 22, 1 (1998): s. 37–42.
6. Ratajczyk E. „Kontrola jakości powierzchni łożysk tocznych automatami AVIKO”. Mechanik. 4, 68 (1995): s. 203–207.
7. Hagino T. et al. “Sphericity measurement using stitching interferometry”. Key Engineering Materials. 523–524 (2012): s. 883–888.
8. Guido Bartl et al. “Interferometric determination of the topographies of absolute sphere radii using the sphere interferometer of PTB”. Meas. Sci. Technol. 21 (2010): s. 115101 (8pp).
9. Halkaci H.S., Mavi Ö., Yigit O. “Evaluation of form error at semispherical tools by use of image processing”. Measurement. 40, 9–10 (2007): s. 860–867.
10. Song L.M. et al. “Novel 3D sphericity evaluation based on SFS-NDT”. NDT&E International. 38 (2005): s. 442–447.
11. Samuel G.L., Shunmugam M.S. “Evaluation of circularity and sphericity from coordinate measurement data”. Journal of Materials Processing Technology. 139, 1–3 (2003): s. 90–95.
12. Poniatowska M., Werner A. “Fitting spatial models of geometric deviations of free-form surfaces determined in coordinate measurements”. Metrology and Measurement Systems. 12, 4 (2010): s. 599–610.
13. Liang-Chia Chen. “Automatic 3D surface reconstruction and sphericity measurement of micro spherical balls of miniaturized coordinate measuring probes”. Meas. Sci. Technol. 18 (2007): s. 1748–1755.
14. Samuel G.L., Shunmugam M.S. “Evaluation of sphericity from form data using computational geometric techniques”. International Journal of Machine Tools and Manufacture. 42, 3 (2002): s. 405–416.
15. Huang J. “An exact minimum zone solution for sphericity evaluation”. Computer-Aided Design. 31, 13 (1999): s. 845–853.
16. Kuang Chao Fan, Ji-Chun Lee. “Analysis of minimum zone sphericity error using minimum potential energy theory”. Precision Engineering. 43, 2 (1999): s. 65–72.
17. Kanada T. “Evaluation of spherical form errors – Computation of sphericity by means of minimum zone method and some examinations with using simulated data”. Precision Engineering. 17, 4 (1995): s. 281–289.