Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[78900] Artykuł: Application of ceramic dust as a modifier reducing the extent of rheological deformations in airfield pavement concreteCzasopismo: 8th Scientific-technical Conference On Material Problems In Civil Engineering (matbud'2018) Tom: 163, Strony: 1-8ISSN: 2261-236X ISBN: 978-2-7598-9052-1 Wydawca: E D P SCIENCES, 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE Opublikowano: 2018 Seria wydawnicza: MATEC Web of Conferences Autorzy / Redaktorzy / Twórcy Grupa MNiSW: Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science) Punkty MNiSW: 15 Klasyfikacja Web of Science: Proceedings Paper DOI Web of Science |
The article presents material solution based on the application of ceramic dust as concrete mix component intended for airfield pavements. Material composition is intended for the application on the selected areas of pavement exposed to the influence of imposed thermal loads intensifying the stress strain state of concrete slabs. Due to the nature of loading of these parts it is necessary to reduce the extent of registered rheological deformations. Concrete containing dust additive is distinguished by more favourable porosity properties, more consistent cement matrix without visible discontinuities and with the formed different hydration products. Diversification of internal micro structure of cement concrete using the suggested dust has significant influence on the improvement of mechanical, physical and performance parameters. Also, assessment of the applied dust influence on the extent of the registered rheological deformations was presented. The analyses included concretes curing in standard conditions and concretes subject to thermal cycles representing the destructive influence of imposed loading. The obtained laboratory test results prove clearly the validity of the suggested solution. Reducing the extent of deformations is derivative of favourable changes observed in internal structure of concrete composite. Better formed contact areas provide the increased concrete parameters and consequently influence extending concrete durability.