Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[78560] Artykuł: Structural strength assessment of the reconstructed road structure in terms of the loading time and yield criterionCzasopismo: IOP Conference Series: Conference on Resilient and Safe Road Infrastructure (KIELCE) Tom: 356, Strony: 1-10ISSN: 1757-8981 Wydawca: IOP PUBLISHING LTD, DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND Opublikowano: 2018 Seria wydawnicza: IOP Conference Series-Materials Science and Engineering Autorzy / Redaktorzy / Twórcy Grupa MNiSW: Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science) Punkty MNiSW: 15 Klasyfikacja Web of Science: Proceedings Paper Pełny tekst DOI Web of Science |
This article reports the results of numerical simulations of the stress-strain states in the rebuilt road structure compared to the solutions contained in the Polish Catalogue, with the true characteristics of the layer materials taken into account. In the case analysed, a cold-recycled base layer with foamed bitumen as a recycling agent was used. The presented analysis is complementary to the mandatory in Poland procedure of mechanistic pavement design based on a linear elastic model. The temperature distribution in the road structure was analysed at the reference temperature of 40 degrees C on the asphalt layer surface. The loading time was included in the computer simulations through the use of the classic generalized Maxwell model and thus the stiffness-time history of the layers had to be determined. For this purpose, the dynamic modulus E* tests of the loading time frequency from 0.1 Hz to 20 Hz were carried out, and the yield point was modelled using the Coulomb-Mohr failure criterion calculated on the basis of triaxial compression tests. The analytical solution to the problem was found with ABAQUS. The results demonstrate that the high temperature of asphalt layers and long loading time noticeably reduces the stiffness modulus in those layers. That reduction changes the principal stress levels, which significantly influences the shear stress both in the recycled base layer and in the subgrade soil. Should the yield point be exceeded rapidly in the recycled layer, the horizontal stresses in the asphalt layers will increase and adversely affect the durability of the reconstructed road pavement structure, especially in the zones of slow heavy vehicle traffic.