Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[77160] Artykuł:

Impact of the additives used In mineral jet fuels on the lubricating properties of synthetic fuels for turbine aircraft engines

Czasopismo: Journal of KONES 2018   Tom: 25, Zeszyt: 2, Strony: 121-128
ISSN:  1231-4005
Opublikowano: 2018
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Wojciech Dzięgielewski Niespoza "N" jednostki25.00.00  
Urszula Kaźmierczak Niespoza "N" jednostki25.00.00  
Andrzej Kulczycki Niespoza "N" jednostki25.00.00  
Dariusz Ozimina orcid logo WMiBMKatedra Mechaniki**Takzaliczony do "N"Inżynieria mechaniczna2514.003.50  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 14


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Keywords:

lubricity  fuels for turbine aircraft engines  synthetic components  additives 



Abstract:

Hydrocarbon containing synthetic fuels represent a promising alternative fuels. Despite different chemical compositions, their properties should be similar to properties of mineral fuels, as they are designed for the same drive units. The basic parameter related to the protection of the adequate service life of the power supply devices, including precision pairs, is lubricity. Lubricity depends on a number of factors, including these related to the chemical composition of fuel components and operating additives introduced into fuels in order to modify their properties.The preliminary results of research on the effect of additives: lubricating, anti-corrosion and anti-electrostatic once, on the lubricating properties of a synthetic fuel are shown in the paper. It was observed that there are relations between the content of additives and the dynamics of film formation. It is significant that this does not apply only to the lubricating additive, but also the additive, which protects the correct electrostatic balance by providing sufficiently high electrical conductivity of the fuel. This may indicate that the formation of a lubricating film remains in relation to the intensity of energy transport from the lubricated surface to the molecules of lubricating additives inside the film. The results shown in the paper preliminary confirm the hypothesis, that synthetic components of fuels change the concentration of ordered molecular structures (which are present in mineral part of fuels and which can be responsible for energy transport inside the lubricating film), what resulted in worse fuel ability to create protective film, and anti-electrostatic additive improves lubricity of blends of synthetic and mineral components.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Płaza, S., Margielewski, L., Celichowski, G., Wstęp do tribologii i tribochemia, Wyd. UŁ, Lodz 2005.
[2] Gatchell, M., Zettergren, H., Knockout driven reactions in complex molecules and their clusters, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 49, No. 16, pp. 1-20, 2016.
[3] Chen, D., Akroyd,J., Mosbach,J., Opalka, D., Kraft, M., Solid-liquid transitionsin homogenous ovalene, hexabenzocoronene and circumcoronene clusters: A molecular dynamics study, Cambridge Centre for Computational Chemical Engineering, Preprint, No. 143, pp. 1-26, 2014.
[4] ASTM D 5001 – Standard Test Method for Measurement of Lubricity of Aviation Turbine Fuels by the Ball-on-Cylinder Lubricity Evaluator (BOCLE).
[5] ISO 12156-1:2016 Diesel fuel – Assessment of lubricity using the high-frequency reciprocating rig (HFRR) – Part 1: Test method.
[6] Hiratsuka, K., Kajdas, C., Yoshida, M., Tribo-catalysis in the synthesis reaction of carbon dioxide, Tribol.Trans., Vol. 47, pp. 86-93, 2004.
[7] Knorr Jr., D. B., Gray, T. O., Overney, R. M., Cooperative and submolecular dissipation mechanisms of sliding friction in complex organic systems, J. Chem. Phys., 129074504, 2008.
[8] Piekoszewski, W., Szczerek, M., Tuszyński, M., The Action of Lubricants Under Extreme Conditions in a modified Four-Ball Tester, Wear, Vol. 249, pp. 188-193, 2001.
[9] Pitz, W. J., Cernansky, N. P., Dryer, F. L., Egolfopoulos, F. N., Farrell, J. T., Friend, D. G., Pitsch, H., Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels, SAE International Paper 2007-01-0175.
[10] Kulczycki, A., Dzięgielewski, W., Ozimina, D., The influence of chemical structure of synthetic hydrocarbons and alcohols on lubricity of CI engine fuels, and aviation fuels, Tribology, Vol. 3, pp. 91-100, 2007.
[11] https://www.dieselnet.com/tech/fuel_diesel_lubricity.php.
[12] Jankowski, A., Kowalski, M., Creating Mechanisms of Toxic Substances Emission of Combustion Engines, Journal of KONBiN, 4(36), DOI 10.1515/jok-2015-0054, pp. 33-42, arsaw 2015.
[13] Jankowski, A., Kowalski, M., Start-up Processes’ Efficiency of Turbine Jet Engines, Journal
of KONBiN, Vo1. 40, Issue 1, DOI 10.1515/jok-2016-0041 pp. 63-82, Warsaw 2016.
[14] Jankowski, A., Reduction Emission Level of Harmful Components Exhaust Gases by Means of Control of Parameters Influencing on Spraying Process of Biofuel Components for Aircraft Engines, Journal of KONES, Vol. 18, No. 3, pp. 129-134, Warsaw 2011.
[15] Kaźmierczak, U., Kulczycki, A., Dzięgielewski, W., Jankowski, A., Microemulsion Fuels for Piston Engines, Journal of KONBiN. Volume 21, Issue 1, pp. 131-140, 2012.
[16] Kowalski, M., Unstable Operation of the Turbine Aircraft Engine, Journal of Theoretical and Applied Mechanics, Vol. 51, Issue 3, pp. 719-727, Warsaw 2013.
[17] Zurek, J., Kowalski, M., Jankowski, A., Modelling of Combustion Process of Liquid Fuels under Turbulent Conditions, Journal of KONES, Vol. 22, Issue 4, DOI: 10.5604/12314005.1168562, pp. 355-364, Warsaw 2015.