Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[7715] Artykuł:

Solution of a stationary inverse heat conduction problem by means of Trefftz non-continuous method

Czasopismo: International Journal of Heat and Mass Transfer   Tom: 50, Zeszyt: 11-12, Strony: 2170-2181
ISSN:  0017-9310
Wydawca:  PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
Opublikowano: Czerwiec 2007
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Michał J. Ciałkowski33.00  
Andrzej Frąckowiak33.00  
Krzysztof Grysa orcid logoWZiMKKatedra Matematyki *****3324.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 24
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

inverse problem  non-continuous solution 



Abstract:

In the paper, the non-continuous FEM with Trefftz base functions (FEMT) applied to direct and inverse problem of heat conduction equation has been presented. For the finite number of base functions in each finite element the temperature field becomes non-continuous on the border between elements. This non-continuity has been decreased with the penalty function added to optimised functional. The numerical entropy distribution and energy dissipation function have been analysed on the common boundaries of elements. Increasing the number of base functions in the finite element substantially decreases the inaccuracies of direct and inverse problem solution. (c) 2006 Elsevier Ltd. All rights reserved.



B   I   B   L   I   O   G   R   A   F   I   A
1. Bejan, A., "Entropy Generation through Heat and Fluid Flow", 1994
2. M. Ciałkowski, A. Frąckowiak, Heat Functions and Their Application to Solving Heat Conduction and Mechanical Problems, Wydawnictwo Politechniki Poznańskiej, Poznań, 2000 (in Polish).
3. M. Ciałkowski, The principle of minimum entropy production applied to solving inverse problems of heat conduction, in: XII Sympozjum Wymiany Ciepła i Masy, Kraków, 2004 (in Polish).
4. Cockburn, B., "Discontinuous Galerkin methods", ZAMM, 2003, p.731-754
5. Zienkiewicz, O.C.& Taylor, R.L.& Sherwin, S.J.& Peiro, J., "On discontinuous Galerkin methods", Int. J. Numer. Meth. Eng., vol. 58, 2003, p.1119-1148
6. Dennis, B.H.& Dulikravich, G.S.& Shinobu, Yoshimura, "A finite element formulation for the determination of unknown boundary conditions for 3-D steady thermoelastic problems", ASME J. Heat Transfer, vol. 126, February, 2004, see also, http://cfdlab.uta.edu/~brian/papers/JHT-INVERSE03.pdf
7. Throne, R.& Olson, L., "The steady inverse heat conduction problem: a comparison of methods with parameter selection", J. Heat Transfer, vol. 123, August, 2001, p.633-644
8. Kim, Sun Kyoung& Lee, Woo II, "Inverse estimation of steady-state surface temperature on a three-dimensional body", Int. J. Numer. Meth. Heat Fluid Flow, vol. 12, 8, 2002, p.1032-1050
9. Martin, T.J.& Dulikravich, G.S., "Inverse determination of steady heat convection coefficient distributions", Trans. ASME, vol. 120, Mai, 1998, p.328-334