Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[7345] Artykuł:

2D wave polynomials as base functions in modified FEM

Czasopismo: Computer Assisted Mechanics and Engineering Sciences   Tom: 15, Zeszyt: 3/4, Strony: 265-278
ISSN:  1232-308X
Opublikowano: 2008
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Artur Maciąg orcid logoWZiMKKatedra Matematyki *****331.33  
Beata Maciejewska orcid logoWZiMKKatedra Matematyki *****331.33  
Małgorzata Sokała orcid logoWZiMKKatedra Matematyki *****331.33  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 4


Web of Science LogoYADDA/CEON    
Słowa kluczowe:

funkcje Trefftza  funkcja falowa  MES 


Keywords:

Trefftz functions  wave function  inverse operations  FEM 



Abstract:

The paper presents solutions of a two-dimensional wave equation by using Trefftz functions. Two ways of obtaining different forms of these functions are shown. The first one is based on a generating function for the wave equation and leads to recurrent formulas for functions and their derivatives. The second one is based on a Taylor series expansion and additionally uses the inverse Laplace operator. Obtained wave functions can be used to solve the wave equation in the whole considered domain or can be used as base functions in FEM. For solving the problem three kinds of modified FEM are used: nodeless, continuous and discontinuous FEM. In order to compare



B   I   B   L   I   O   G   R   A   F   I   A
[1] M. Ciałkowski, A. Frąckowiak. Funkcje cieplne i pokrewne w rozwiązywaniu wybranych równań mechaniki, Część I. Rozwiazywanie niektorych rownań cząstkowych za pomocą. operacji odwrotnych. Współczesne Problemy Techniki, Studia i Materialy, 3: pp. 7-69. Wydawnictwo Uniwersytetu Zielonogorskiego, Zielona Gora, 2003.
[2] M. Ciałkowski, A. Frąckowiak. Heat functions and their application to solving heat conduction and mechanical problems (in Polish). Wydawnictwo Politechniki Poznańskiej, Poznań, 2000.
[3] M. Ciałkowski, A. Frąckowiak, K. Grysa. Physical regularization for inverse problems of stationary heat conduction. J. Inv. Ill-posed Problems, 15: 1-18, 2007.
[4] M. Ciałkowski, A. Frąckowiak, K. Grysa. Solution of stationary inverse heat conduction problems by means of Trefftz non-continuous method. Int. J. Heat Mass Transfer, 50: 2170-2181, 2007.
[5] S. Futakiewicz.The Heatl Functions Method for Direct and Inverse Problem of Heat Conduction (in Polish), Doctoral thesis, Poznań, 1999.
[6] L. Hożejowski. Heat polynomials and their applications in direct and inverse problem of heat conduction, Doctoral in Polish), Kielce, 1999.
[7] A. Maciąg, Two-dimensional wave polynomials as base functions for continuity and discontinuity finite elements method (in Polish). In: J. Taler, ed., WspółczesneTtechnologie I Urządzenia Energetyczne, pp. 371-381, Kraków, 2007.
[8] A. Maciąg, J. Wauer, Solution of the two-dimensional wale equation by Rusing wale polynomials. J. Engrg. Math., 51(4): 339-350, 2005.
[9] B. Maciejewska. Application of the modified method of finite elements for identification of temperature of a body heated with a moving heat source. J. Theor. Appl. Math., 42(40: 771-787, 2004.
[10] E. B. Magrab. Vibrations of Elastic structural members. Sijthoff and Noordhoff, Maryland, USA, 1979.
[11] M. Sokała. Analytical and Numerical Methodof SolvingHeat Conduction Problems with the Use of heat Functions and Inverse Operations (in Polish). Doctoral thesis, Poznań, 2004.
[12] M. Sokała, Soltuions of two-dimensional wave equation by using some form of Trefftz functions. In: B. T. Maruszewski, W. Muschik, A. Radowicz, eds. Proceedings of the International Symposium on Trends in Continuum Physics TRECOP'07, Lviv/Bryukovichi, Ukraine, Septembet 16-20, 2007, pp. 70-71. Lviv, 2007.
[13] M. Sokała. Solutions of two-dimensional wave equation by use some form of Trefftz functions. Comput. Meth. Sci. Technol., accept. for publication.
[14] P. C. Rosenbloom, D. V. Wilder. Expansion in terms of heat polynomials and assiociated functions. Trans. Am. Soc., 92: 220-266, 1956.
[15] A. P. Zieliński, I. Herrera, Trefftz method: fitting boundary conditions. Int. J. Num. meth. Engrg., 24: 871-891, 1987.