Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The mechanism of concrete degradation as a result of an alkali-silica reaction (ASR) largely depends on the mineral composition and microstructure of the reactive aggregate. This paper shows the reactivity results of quartz-glaukonitic sandstone, which is mainly responsible for the reactivity of some post-glacial gravels, available in Poland. After initial petrographic observations under a light microscope, the mode of sandstone degradation triggered by the reaction with sodium and potassium hydroxides was identified using scanning electron microscopy (SEM). It has been found that chalcedony agglomerates present in sandstone are separated from the rock matrix and subsequently cause the cracks formation in this matrix. Additionally, microcrystalline and potentially reactive silica is also dispersed in sandstone cement.
B I B L I O G R A F I A1. Pignatelli R., Comi C., Monteiro P.J.M. A coupled mechanical and chemical damage model for concrete affected by alkali-silica reaction. Cem. Concr. Res. 2013, 53, 196–210.
2. Thomas M.D.A., Fournier B. Folliard K.J. Report No. FHWA-HIF-13-019: Alkali-Aggregate Reactivity (AAR) Facts Book
Office of Pavement Technology Federal Highway Administration: Washington, DC, USA, 2013.
3. Katayama T. The so-called alkali-carbonate reaction (ACR)—Its mineralogical and geochemical detail, with special reference to ASR. Cem. Concr. Res. 2010, 40, 643–675.
4. Grattan-Bellew P.E., Mitchell L.D., Margesin J. Min D. Is alkali-carbonate reaction just a variant of silica reaction ACR = ASR? Cem. Concr. Res. 2010, 40, 556–562.
5. Qian G., Deng M., Lan X., Xu Z., Tang M. Alkali carbonate reaction expansion of dolomitic limestone aggregate with porphyrotopic texture. Eng. Geol. 2002, 63, 17–19.
6. Jensen, V. Reclassification of Alkali Aggregate Reaction. In Proceedings of the 14th International Conference on Alkali-Aggregate Reaction in Concrete, Austin, TX, USA, 20–25 May 2012.
7. Islam M.S. Prediction of ultimate expansion of ASTM C 1260 for various alkali solutions using the proposed decay model. Constr. Build. Mater. 2015, 77, 317–326.
8. Owsiak Z. Dependence between the composition of pore solution and the expansion of mortar containing reactive aggregate. Ceram.-Silik. 2005, 49, 109–114.
9. Broekmans, M.A.T.M. Structural properties of quartz and their potential role for ASR. Mater. Charact. 2004, 53, 129–140.
10. Fernandes I., Ribeiro, M.A., Broekmans M.A.T.M., Sims I. RILEM Recommended Test Method: Detection of Aggregates Regarding Potential Reactivity to Alkalis. Springer Verlag: Berlin/Heidenberg, Germany, 2016, ISBN 978-94-017-7251-8.
11. Ramos V., Fernandes I., Silva A.S., Soares D., Fournier B., Leal S., Noronha F. Assessment of the potential reactivity of granitic rocks—Petrography and expansion test. Cem. Concr. Res. 2016, 86, 63–77.
12. Jarmontowicz A., Krzywobłocka-Laurów R. Instrukcja ITB 317: Ocena Potencjalnej Reaktywności Kruszywa Żwirowego w Stosunku do Alkalii na Podstawie Badań Instrumentalnych
Instytut Techniki Budowlanej: Warsaw, Poland, 1993.
13. Leemann A. Lothenbach B., Thalmann C. Influence of superplasticizers on pore solution and on expansion of concrete due to alkali-silica reaction. Constr. Build. Mater. 2011, 25, 344–350.
14. Owsiak Z. Contribution of alkali from aggregate to pore solution of concrete. Cem. Lime Concr. 2001, 6, 149–153.
15. Owsiak Z. The alkali-silica reaction in concrete. Pol. Cer. Bull. Ceram. 2002, 72, 5–107.
16. Holleman A.F., Wiberg N., Wiberg E. Lehrbuch der Anorganischen Chemie
Walter Gruyter Verlag: Berlin, Germany, New York, NY, USA, 1985, ISBN 3-11-007511-3.
17. Owsiak Z., Czapik P. Interfacial transition zone of cement paste-reactive aggregate in cement—Zeolite mortars. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 31–34.
18. Zapała-Sławeta J., Owsiak Z. Effect of lithium nitrate on the reaction between opal aggregate and sodium and potassium hydroxides in concrete over a long period of time. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 773–778.
19. Liu S., Wang S., Tang W., Hu N., Wei J. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate. Materials 2015, 8, 6849–6862.
20. Owsiak Z. The effect of delayed ettringite formation and alkali-silica reaction on concrete microstructure. Ceram.-Silik. 2010, 54, 151–153.
21. Hamoudi A., Khouchaf L., Depecker C., Revel B., Montagne L., Corrdier P. Microstructural evolution of amorphous silica following alkali-silica reaction. J. Non-Cryst. Solids 2008, 354, 5074–5078.
22. Alnaggar M., Di Luzio G., Cusatis G. Modeling Time-Dependent Behavior of Concrete Affected by Alkali Silica Reaction in Variable Environmental Conditions. Materials 2017, 10, 471.
23. Zheng K., Lukovic M., De Schutter G., Ye G., Taerwe L. Elastic Modulus of the Alkali-Silica Reaction Rim in a Simplified Calcium-Alkali-Silicate System Determined by Nano-Indentation. Materials 2016, 9, 787.
24. Hin J.-H., Struble L.J., Kirkpatrick R.J. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test. Materials 2015, 8, 8292–8303.
25. ASTM C441/C441M. Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction
ASTM International: West Conshohocken, PA, USA, 2011.
26. Manecki A., Muszyński M. Przewodnik do Petrografii, AGH: Cracow, Poland, 2008, ISBN 979-83-7464-110-4.
27. Gao X.X., Multon S., Cyr M., Sellier A. Alkali-silica reaction (ASR) expansion, Pessimum effect versus scale effect. Cem. Concr. Res. 2013, 44, 25–33.
28. Rivard P., Ollivier J.-P., Ballivy G. Characterization of the ASR rim. Application to the Potsdam sandstone. Cem. Concr. Res. 2002, 32, 1259–1267.
29. Lindgård J., Andiç-Çakır Ö., Fernandes I., Rønning T.F., Thomas M.D.A. Alkali-silica reaction (ASR), Literature review on parameters influencing laboratory performance testing. Cem. Concr. Res. 2012, 42, 223–243.
30. López-Buendia A.M., Climent V., Verdú P. Lithological influence of aggregate in the alkali-carbonate reaction. Cem. Concr. Res. 2006, 36, 1490–1500.
31. Newman J., Choo B.-S. Advanced Concrete Technology Volume II: Concrete Properties. Elsevier: Oxford, UK, 2003.
32. Owsiak Z., Zapała-Sławeta J., Czapik P. Diagnosis of concrete structures distress due to alkali-aggregate reaction. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 23–30.
33. Owsiak Z., Zapała J., Czapik P. Sources of the gravel aggregate reaction with alkalis in concrete. Cem. Lime Concr. 2012, 17, 149–153.
34. Piasta W., Budzyński W., Góra J. The effect of selected aggregates on the properties of high performance concrete. Cem. Lime Concr. 2015, 20, 171–178.
35. Jóźwiak-Biedźwiedzka D., Gibas K., Glinicki M.A. Petrographic identification of reactive minerals in domestic aggregates and their classification according to RILEM and ASTM recommendation. Road Bridges Drogi i Mosty 2017, 16, 223–239.
36. ASTM C1260–14. Standard Test Method for Potential Reactivity of Aggregates (Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2014.
37. ASTM C227–10. Standard Test Method for Potential Alkali Reactivity of Cement—Aggregate Combinations (Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2010.
38. Owsiak Z., Czapik P. The reduction of expansion of mortars produced from reactive aggregate by the clinoptilolite addition. Cem. Lime Concr. 2014, 19, 152–157.
39. Owsiak Z., Czapik P. Limitation of the effects at AAR in concrete by the addition of zeolite. Cem. Lime Concr. 2013, 18, 310–320.
40. PN-92/B-06714-46. Mineral Aggregate-Test—Determination of Potential Alkaline Reactivity by the Fast Method
Polish Committee for Standardization: Warsaw, Poland, 1992.
41. PN-EN 1936:2010. Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity
Polish Committee for Standardization: Warsaw, Poland, 2010.
42. Leemann A. Raman microscopy of alkali-silica reaction (ASR) products formed in concrete. Cem. Concr. Res. 2017, 102, 41–47.
43. National Ready Mixed Concrete Association. Guide Specifications for Concrete Subject to Alkali-Silica Reactions. NRMCA: Silver Spring, MD, USA, 1993.
44. Ponce J.M., Batic O.R. Different manifestation of the alkali-silica reaction in concrete according to the kinetics of the reactive aggregate. Cem. Concr. Res. 2006, 36, 1148–1156.
45. Handke M. Krystalochemia krzemianów. AGH: Cracow, Poland, 2005.
46. Monnin Y., Dégrugilliers P., Bulteel D., Garcia-Diaz E. Petrography study of two siliceous limestones submitted to alkali-silica reaction. Cem. Concr. Res. 2006, 36, 1460–1466.
47. Milanesi C.A., Marfil S.A., Batic O.R., Maiza P.J. The alkali-carbonate reaction and its reaction products an experience with Argentinean dolomite rocks. Cem. Concr. Res. 1996, 26, 1579–1591.
49. Kurdowski W., Garbacik A., Trybalska B. Application of accelerated test ASTM C1260 to aggregate containing calcium carbonate. Cem. Lime Concr. 2005, 10, 339–348.