Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[71000] Artykuł:

The Microstructure and Properties of the Bimetallic AZ91/AlSi17 Joint Produced by Compound Casting

Czasopismo: Archives of Foundry Engineering   Tom: 18, Zeszyt: 1, Strony: 71-76
ISSN:  1897-3310
Opublikowano: Styczeń 2018
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Renata Mola orcid logo WMiBMKatedra Technik Komputerowych i Uzbrojenia**Niezaliczony do "N"Inżynieria mechaniczna507.507.50  
Tomasz Bucki orcid logo WMiBMKatedra Technik Komputerowych i Uzbrojenia**Niespoza "N" jednostkiInżynieria mechaniczna507.50.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 15


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

innowacyjne technologie odlewnicze  innowacyjne materiały odlewnicze  proces odlewania  mikrostruktura  właściwości mechaniczne 


Keywords:

Innovative foundry technologies and materials  Compound casting process  Bonding zone  Microstructure  Mechanical  properties 



Abstract:

Bimetallic AZ91/AlSi17 samples were produced by compound casting. The casting process involved pouring the AZ91 magnesium alloy
heated to 650oC onto a solid AlSi17 aluminum alloy insert placed in a steel mould. Prior to casting, the mould with the insert inside was
heated to about 370oC. The bonding zone formed between AZ91 and AlSi17 had a thickness of about 200 μm; it was characterized by a
non-homogeneous microstructure. Two different areas were distinguished in this zone: the area adjacent to the AZ91 and the area close to
the AlSi17. In the area closest to the AZ91 alloy, a eutectic composed of an Mg17Al12 intermetallic phase and a solid solution of Al in Mg
was observed. In bonding zone at a certain distance from the AZ91 alloy an Mg2Si phase co-occurred with the eutectic. In the area
adjacent to the AlSi17 alloy, the structure consisted of Al3Mg2, Mg17Al12 and Mg2Si. The fine Mg2Si phase particles were distributed over
the entire Mg-Al intermetallic phase matrix. The microhardness of the bonding zone was much higher than those of the materials joined;
the microhardness values were in the range 203-298 HV. The shear strength of the AZ91/AlSi17 joint varied from 32.5 to 36 MPa.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Gray, J.E. & Luan, B. (2002). Protective coatings on magnesium and its alloys – a critical review. Journal of Alloys and Compounds. 336(1-2), 88-113.
[2] Ignat, S., Sallamand, P., Grevey, D. & Lambertin, M. (2004). Magnesium alloys laser (Nd:YAG) cladding and alloying with side injection of aluminium powder. Applied Surface Science. 225(1), 124-134.
[3] Singh, A. & Harimkar, S.P. (2012). Laser surface engineering of magnesium alloys: a review. JOM. 64(6), 716-733.
[4] Dziadoń, A., Mola, R. & Błaż, L. (2016). The microstructure of the surface layer of magnesium laser alloyed with aluminium and silicon. Materials Characterization. 118, 505-513.
[5] Shigematsu, M., Nakamura, M., Saitou, K. & Shimojima, K. (2000). Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating. Journal of Materials Science Letter. 19(6), 473-475.
[6] Mola, R. (2015). The properties of Mg protected by Al- and Al/Zn-enriched layers containing intermetallic phases. Journal Materials Research. 30(23), 3682-3691.
[7] Taha, M.A., El-Mahallawy, N.A., Hammouda, R.M. & Nassef, S.I. (2010). PVD Coating of Mg-AZ31 by thin layer of Al and Al-Si. Journal of Coatings Technology and Research. 7(6), 793-800.
[8] Zhu, B., Liang, W. & Li, X. (2011). Interfacial microstructure, bonding strength and fracture of magnesium-aluminium laminated composite plates fabricated by direct hot pressing. Materials Science and Engineering: A. 528(21), 6584-6588.
[9] Zhang, X.P., Yang, T.H., Castagne, S. & Wang, J.T. (2011). Microstructure
bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling. Materials Science and Engineering: A. 528(4), 1954-1960.
[10] Wierzba, A., Mróz, S., Szota, P., Stefanik, A. & Mola, R. (2015). The influence of the asymmetric ARB process on the properties of Al-Mg-Al multi-layer sheets. Archives of Metallurgy and Materials. 60(4), 2821-2825.
[11] Liu, X.B., Chen, R.S. & Han, E.H. (2009). Preliminary investigation on the Mg-Al-Zn/Al laminated composite fabricated by equal channel angular extrusion. J. Mater. Process. Tech. 209(10), 4675-4681.
[12] Binotsch, C., Nickel, D., Feuerhack, A. & Awiszus, B. (2014). Forging of Al-Mg compounds and characterization of interface. Procedia Engineering. 81, 540-545.
[13] Mróz, S., Stradomski, G., Dyja, H. & Galka, A. (2015). Using the explosive cladding method for production of Mg-Al bimetallic bars. Archives of Civil and Mechanical Engineering. 15(2), 317-323.
[14] Bae, J.H., Prasada Rao, A.K., Kim, K.H. & Kim, N.J. (2011). Cladding of Mg alloy with Al by twin-roll casting. Scripta Materialia. 64(9), 836-839.
[15] Wróbel, T. & Szajnar, J. (2015). Bimetallic casting: ferritic stainless steel-grey cast iron. Archives of Metallurgy and Materials. 60(3), 2361-2365.
[16] Wróbel, T., Cholewa, M. & Tenerowicz, S. (2011). Bimetallic layered castings alloy steel – carbon cast steel. Archives of Foundry Engineering. 11(1), 105-108.
[17] Szymczak, T. (2011). The influence of selected technological factors on the quality of bimetallic castings alloy steel-silumin. Archives of Foundry Engineering 11(3), 215-226.
[18] Papis, K.J.M., Loeffler, J.F. & Uggowitzer, P.J. (2009). Light metal compound casting. Science in China Series E: Technological Sciences. 52(1), 46-51.
[19] Hajjari, E., Divandari, M., Razavi, S.H., Homma, T. & Kamado, S. (2012). Intermetallic compounds and antiphase domains in Al/Mg compound casting. Intermetallics. 23, 182-186.
[20] Emami, S.M., Divandari, M., Arabi, H. & Hajjari, E. (2013). Effect of melt-to-solid insert volume ratio on Mg/Al dissimilar metals bonding. Journal of Materials Engineering and Performance. 22(1), 123-130.
[21] Mola, R., Bucki, T. & Dziadoń, A. (2016). Formation of Al-alloyed layer on magnesium with use of casting techniques. Archives of Foundry Engineering. 16(1), 112-116.
[22] Mola, R., Bucki, T. & Dziadoń, A. (2017). Effects of the pouring temperature on the formation of the bonding zone between AZ91 and AlSi17 in the compound casting process. IOP Conference Series: Materials Science and Engineering. 179(1), 1-6.
[23] Mola, R., Bucki, T. & Dziadoń, A. (2017). Microstructure of the bonding zone between AZ91 and AlSi17 formed by compound casting. Archives of Foundry Engineering. 17(1), 202-206.
[24] Crystallographic and Thermodynamic Data of Binary Alloys, Landolt-Börstein New Series, Group IV, Springer-Verlag Berlin 1998.
[25] Tang, Y., Du, Y., Zhang, L., Yuan, X. & Kaptay, G. (2012). Thermodynamic description of the Al-Mg-Si system using a new formulation for the temperature dependence of the excess Gibbs energy. Thermochim. Acta. 527, 131-142.
[26] Westbrook, J.H. & Fleischer, R.L. (2000). Structural applications of intermetallic compounds. John Willey& Sons.
[27] Hayat, F. (2011). The effects of the welding current on heat input, nugget geometry, and the mechanical and fractural properties of resistance spot welding on Mg/Al dissimilar materials. Materials & Design. 32(4), 2476-2484.