Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The paper presents results of an experimental and numerical analysis of brittle fracture toughness of pine wood (Pinus sylvestris L.) in the TL and RL crack propagation systems. Two loading modes were analyzed: mode I - opening and mode II - edge sliding. Fracture toughness of pine wood was characterized by critical values of the energy release rates. The acoustic emission method applied in the experiments made it possible to determine the crack initiation and the critical load with ease and accuracy. A data analysis was performed on the basis of the beam theory taking into consideration wood anisotropy. The values of G alpha were calculated numerically using the Adina v. 7.3 Finite Element Method (FEM) program. By applying the numerical models, and basing on the experimentally determined values of the critical loads, Pc, it was possible to calculate the critical energy release rates. Also, it was crucial to determine how the size of the virtual crack extension region, corresponding to the integral contour, affects the energy release rates. The analysis showed that the larger the region, the higher the energy release rates. No such influence was reported when the region reached the outer surface of the numerical model.
B I B L I O G R A F I A1. D. ATACK, W. D. MAY, E. L. MORRIS, R. N. SPROULE, The energy of tensile and cleavage fracture of black spruce, Tappi, 44, 555-567, 1961.
2. A. W. PORTER, On the mechanics of fracture in wood, Forest Products Journal, 14, 325-331, 1964.
3. G. R. DEBAISE, A. W. PORTER, R. E. PENTONEY, Morphology and mechanics of wood fracture, Materials Research & Standards, 6, 493-499, 1966.
4. A. P. SCHNIEWIND, R. A. POZNIAK, On the fracture toughness of Douglas fir wood, Engineering Fracture Mechanics, 2, 223-233, 1971.
5. A. P. SCHNIEWIND, D. E. LYON, A fracture mechanics approach to the tensile strength perpendicular to grain of dimension lumber, Wood Science And Technology, 7, 45-59, 1973.
6. A. P. SCHNIEWIND, J. C. CENTENO, Fracture toughness and duration of load factor I. Six principal systems of crack propagation and the duration factor for cracks propagating parallel to grain, Wood And Fiber, 5, 152-159, 1973.
7. J. A. JOHNSON, Crack initiation in wood plates, Wood Science, 6, 151-158, 1973.
8. A. P. SCHNIEWIND, Fracture toughness and duration of load factor II. Duration factor for cracks propagating perpendicular-to-grain, Wood and Fiber, 9, 216-226, 1977.
9. R. PETTERSON, J. BODIG, Prediction of fracture toughness of conifers, Wood and Fiber Science, 15, 302-316, 1983.
10. B. YEH, A. P. SCHNIEWIND, Elasto-plastic fracture mechanics of wood using the J-integral method, Wood and Fiber Science, 24, 364-376, 1992.
11. K. ANDO, K. SATO, M. FUSHITANI, Fracture toughness and acoustic Emission characteristics of wood II. Effects of grain angle, Mokuzai Gakkaishi, 38, 342-349, 1992.
12. K. ANDO, M. OHTA, Relationships between the morphology of micro-fractures of wood and the acoustic emission characteristics, Mokuzai Gakkaishi, 41, 640-646, 1995.
13. S. E. STANZL-TSCHEGG, D. M. TAN, E. K. TSCHEGG, New splitting method for wood fracture characterization, Wood Science and Technology, 29, 31-50, 1995.
14. S. E. STANZL-TSCHEGG, D. M. TAN, E. K. TSCHEGG, Fracture resistance to the crack propagation in wood, International Journal of Fracture, 75, 347-356, 1996.
15. A. REITERER, S. E. STANZL-TSCHEGG, E. K. TSCHEGG, Mode I fracture and acoustic emission of softwood and hardwood, Wood Science and Technology, 34, 417-430, 2000.
16. G. R. DEBAISE, Mechanics and morphology of wood shear fracture, Ph. D. Thesis, State University College of Forestry, Syracuse University, Syracuse, New York 1970.
17. J. D. BARRETT, R. O. FOSCHI, Mode II stress-intensity factors for cracked wood beams, Engineering Fracture Mechanics, 9, 371-378, 1977.
18. S. M. CRAMER, A. D. PUGEL, Compact shear specimen for wood mode II fracture investigations, International Journal of Fracture, 35, 163-174, 1987.
19. G. PROKOPSKI, Investigation of wood fracture toughness using mode II fracture (shearing), Journal of Materials Science, 30, 4745-4750, 1995.
20. S. Xu, H. W. REINHARDT, M. GAPPOEV, Mode II fracture testing method for highly orthotropic materials like wood, International Journal of Fracture, 75, 185-214, 1996.
21. S. E. STANZL-TSCHEGG, D. M. TAN, E. K. TSCHEGG, Mode II fracture tests on spruce wood, Mokuzai Gakkaishi, 42, 642-650, 1996.
22. H. YOSHIHARA, M. OHTA, Measurement of mode II fracture toughness of wood by end-notched flexure test, Journal of Wood Science, 46, 273-278, 2000.
23. H. YOSHIHARA, Influence of span/depth ratio on the measurement of mode II fracture toughness of wood by end-notched flexure test, Journal of Wood Science, 47, 8-12, 2001.
24. S. MINDESS, A. BENTUR, Crack Propagation in Notched Wood Specimens with Different Grain Orientations, Wood Science and Technology, 20, 145-155, 1986.
25. S. MALL, J. F. MURPHY, M. ASCE, J. E. SHOTTAFER, Criterion for mixed mode fracture in wood, Journal of Engineering Mechanics, 109, 680-690, 1983.
26. PN-EN 380:1998 Timber structures - Test methods - General principles for static load testing.
27. PN-EN 384: 1999 Structural timber - Determination of characteristic values of mechanical properties and density.
28. PN-EN 408:1998 Timber structures - Structural timber and glued laminated timber - Determination of some physical and mechanical properties.
29. J. BODIG, J. R. GOODMAN, Prediction of elastic parameters for wood, Wood Science, 5, 249-264, 1973.
30. C. LEWINOWSKI, Matematyczna analiza wyników badań przeprowadzanych w laboratoriach drogowych, Prace COBiRTD, Warszawa 1968.
31. F. DUCEPT, P. DAVIES, D. GAMBY, An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites, Composites Part A, 28a, 719-729, 1997.
32. E. F. RYBICKI, M. F. KANNINEN, A Finite Element calculation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics, 9, 931-938, 1977.
33. R. B. HABER, H. M. KOH, Explicit expressions for energy release rates using virtual crack extensions, International Journal for Numerical Methods in Engineering, 21, 301-315, 1985.
34. G. P. NIKISHKOV, V. A. VAYNSHTOK, The virtual crack extension method for the stress intensity factors K1, and K11 separation, Problems of Durability, 6, 26-30, 1980.
35. A. SEWERYN, Numerical methods for calculation of stress intensity factors, 17-th Symposium of Fatigue of Materials and Structures, Bydgoszcz-Pieczyska, 301-308, 1998.
36. T. K. HELLEN, On the method of virtual crack extensions, International Journal of Numerical Methods in Engineering, 9, 187-207, 1975.
37. D. M. PARKS, The virtual crack extension method for nonlinear material behavior, Computer Methods in Applied Mechanics & Engineering, 12, 353-364, 1977.
38. ADINA, Theory and Modelling Guide. Volume I: ADINA, ADINA System Online Manuals, Report ARD 99-7, 1999.