Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: A method of synthesis of software for low-power real-time embedded systems is presented in this paper. A function of the system is specified in the form of the task graph, then it is implemented using embedded processors with low-power and high-performance cores. The power consumption is minimized using the developmental genetic programming. The optimization is based on finding the makespan, satisfying all real-time constraints, for which the power consumption is as low as possible. We present experimental results, obtained for real-life examples and for some standard benchmarks. The results show that our method gives better solutions than makespans obtained using existing methods.
B I B L I O G R A F I A1. Ditzel, M., Serdijn, W., Otten, R.: Power-Aware Architecting: for Data-Dominated Applications. Springer, Netherlands (2007). http://dx.doi.org/10.1007/978-1-4020-6420-3
2. Greenhalgh, P.: Big. little processing with ARM CortexTM-A15 & ARM CortexTM-A7, ARM White paper, pp. 1–8 (2011). http://www.arm.com/files/downloads/big.LITTLE_ Final.pdf
3. Benini, L., Bogliolo, A., De Micheli, G.: A survey of design techniques for system-level dynamic power management. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 8(3), 299– 316 (2000). http://dx.doi.org/10.1109/92.845896
4. Shang, L., Dick, R.P., Jha, N.K.: Slopes: hardware– software cosynthesis of low-power real-time distributed embedded systems with dynamically reconfigurable fpgas. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(3), 508–526 (2007). http://dx.doi.org/10.1109/ TCAD.2006.883909
5. Steger, C., Bachmann, C., Genser, A., Weiss, R., Haid, J.: Power-aware hardware/software codesign of mobile devices. e & i Elektrotech. Informationstechnik 127(11), 327–334 (2010)
6. Luo, J., Jha, N.K.: Low power distributed embedded systems: dynamic voltage scaling and synthesis. In: Sahni, S., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552,
pp. 679–693. Springer, Heidelberg (2002). doi:10.1007/3-540-36265-7_63
7. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pp. 374–
382. IEEE (1995). http://dx.doi.org/10.1016/j.ejor.2009.11.005
8. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained
project scheduling problem. Eur. J. Oper. Res. EJOR 207(1), 1–15 (2010). http://dx.doi.org/
10.1016/j.ejor.2009.11.005
9. Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Naval Res. Logistics (NRL) 45(7), 733–750 (1998). http://citeseerx.ist.psu.edu/viewdoc/ download?doi=10.1.1.45.359&rep=rep1&type=pdf
10. Li, X., Kang, L., Tan, W.: Optimized research of resource constrained project scheduling problem based on genetic algorithms. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 177–186. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74581- 5_19
11. Zoulfaghari, H., Nematian, J., Mahmoudi, N., Khodabandeh, M.: A new genetic algorithm for the rcpsp in large scale. Int. J. Appl. Evol. Comput. (IJAEC) 4(2), 29–40 (2013). http:// dx.doi.org/10.4018/jaec.2013040103
12. Jeff, B.: Ten things to know about big.little, ARM Holdings (2013). http://community.arm. com/groups/processors/blog/2013/06/18/ten-things-to-know-about-biglittle
13. Deniziak, S., Ciopiński, L.: Synthesis of power aware adaptive embedded software using developmental genetic programming. In: Fidanova, S. (ed.) Recent Advances in Compu- tational Optimization. SCI, vol. 655, pp. 97–121. Springer, Heidelberg (2016). doi:10.1007/ 978-3-319-40132-4_7
14. Michalewicz, Z.: Genetic Algorithms+Data Structures = Evolution Programs. Springer, Heidelberg (1996). http://dx.doi.org/10.1007/978-3-662-03315-9
15. Dick, R.P., Jha, N.K.: MOGAC: a multiobjective genetic algorithm for hardware-software cosynthesis of distributed embedded systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17(10), 920–935 (1998). http://dx.doi.org/10.1109/43.728914
16. Koza, J., Poli, R.: Genetic programming. In: Burke, E., Kendall, G. (eds.) Search Methodologies, pp. 127–164. Springer, US (2005). http://dx.doi.org/10.1007/0-387-28356- 0_5
17. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Evolutionary design of analog electrical circuits using genetic programming. In: Parmee, I.C. (ed.) Adaptive Computing in Design and Manufacture, pp. 177–192. Springer, London (1998). http://dx.doi.org/10.1007/ 978-1-4471-1589-2_14
18. Deniziak, S., Gorski, A.: Hardware/Software co-synthesis of distributed embedded systems using genetic programming. In: Hornby, G.S., Sekanina, L., Haddow, P.C. (eds.) ICES 2008. LNCS, vol. 5216, pp. 83–93. Springer, Heidelberg (2008). doi:10.1007/978-3-540- 85857-7_8
19. Deniziak, S., Ciopinski, L., Pawinski, G., Wieczorek, K., Bak, S.: Cost optimization of real-time cloud applications using developmental genetic programming. In: IEEE/ACM 7th International Conference on Utility and Cloud Computing, vol. 7269, pp. 182–189. IEEE Computer Society (2014). http://dx.doi.org/10.1109/UCC.2014.126
20. Briand, L., Labiche, Y.: A uml-based approach to system testing. Softw. Syst. Model. 1(1), 10–42 (2002). http://dx.doi.org/10.1007/s10270-002-0004-8
21. Dick, R., Rhodes, D., Wolf, W.: TGFF: task graphs for free. In: Proceedings of the Sixth International Workshop on Hardware/Software Codesign (CODES/CASHE 1998), pp. 97– 101, March 1998 . http://dx.doi.org/10.1109/HSC.1998.666245
22. Sapiecha, K., Ciopinski, L., Deniziak, S.: An application of developmental genetic programming for automatic creation of supervisors of multi-task real-time object-oriented systems. In: IEEE Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 501–509 (2014). http://dx.doi.org/10.15439/2014F208
23. Sapiecha, K., Ciopiński, L., Deniziak, S.: Synthesis of self-adaptive supervisors of multi-task real-time object-oriented systems using developmental genetic programming. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 610, pp. 55–74. Springer, Heidelberg (2016). doi:10.1007/978-3-319-21133-6_4
24. Pawiński, G., Sapiecha, K.: An efficient solution of the resource constrained project scheduling problem based on an adaptation of the developmental genetic programming. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 610, pp. 205– 223. Springer, Heidelberg (2016). doi:10.1007/978-3-319-21133-6_12
25. Hu, J., Marculescu, R.: Energy-and performance-aware mapping for regular noc architec- tures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(4), 551–562 (2005). http:// dx.doi.org/10.1109/TCAD.2005.844106
26. E3s benchmark. http://ziyang.eecs.umich.edu/dickrp/e3s/
27. Han, S., Park, M.: Predictability of least laxity first scheduling algorithm on multiprocessor
real-time systems. In: Zhou, X., Sokolsky, O., Yan, L., Jung, E.-S., Shao, Z., Mu, Y., Lee, D. C., Kim, D.Y., Jeong, Y.-S., Xu, C.-Z. (eds.) EUC 2006 Workshops. LNCS, vol. 4097, pp. 755–764. Springer, Heidelberg (2006). doi:10.1007/11807964_76
28. Sitek, P., Wikarek, J.: A hybrid framework for the modelling and optimisation of decision problems in sustainable supply chain management. Int. J. Prod. Res. 53, 1–18 (2015). http:// dx.doi.org/10.1080/00207543.2015.1005762
29. Sitek, P., Wikarek, J.: A hybrid programming framework for modeling and solving constraint satisfaction and optimization problems. Sci. Program. 2016, 13 (2016). Article ID 5102616. http://dx.doi.org/10.1155/2016/5102616