Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[52840] Artykuł:

THE EFFICIENCY OF OLS ESTIMATORS OF STRUCTURAL PARAMETERS IN A SIMPLE LINEAR REGRESSION MODEL IN THE CALIBRATION OF THE AVERAGES SCHEME

Czasopismo: Folia Oeconomica Stetinensia   Zeszyt: 2, Strony: 231-247
ISSN:  1898-0198
Opublikowano: Luty 2016
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Robert KowalWZiMKKatedra Ekonomii i Finansów*10011.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 11




Abstract:

A simple linear regression model is one of the pillars of classic econometrics. Multiple areas of research function within its scope. One of the many fundamental questions in the model concerns proving the efficiency of the most commonly used hereOLS estimators and examining their properties. In the literature of the subject one can find taking back to this scope and certain solutions in that regard. Methodically, they are borrowed from the multiple regression modell model or also from a boundary partial model. Not everything, however, is here complete and consistent. In the paper a completely new scheme is proposed, based on the implementation of the Cauchy-Schwarz inequality in the arrangement of the constraint aggregated from calibrated appropriately secondary constraints of unbiasedness whichat in a result of choiceof thechoice the appropriate calibrator for each variable directly leads toforshowing this property. A separate range-is a matter of choice of such a calibrator. These deliberations, on account of the volume and kinds of the calibration, were divided into a few parts. In One of the one the efficiency of OLS estimators is proven in a mixed scheme of the calibration by averages,that is preliminary, and in the most basic in frames of the proposed methodology. In thesehis frames the future outlines and general premises constituting the base of more distant generalizations are being created.



B   I   B   L   I   O   G   R   A   F   I   A
1. Dhrymes P. J., Mathematics for Econometrics, Springer, Fourth Edition
2. Gujarati D. N., Porter D. C., Essentials of Econometrics, McGRAW HILL, Fourth Edition
3. Johnston J., Econometric Methods, McGraw-Hill, New York 1987.
4. Kmenta J., Elements of Econometrics, Macmillan, New York 1986.
5. Maddala G.S., Ekonometria, Wydawnictwo Naukowe PWN, Warszawa 2006.
6. Magnus J.R., Katyszew P.K., Pieriesieckij A.A., Ekonometrika. Naczalnyj kurs, Delo, Moskwa 1997.
7. Moss C. B., Mathematical statistics for applied econometrics, CRC Press
8. Spanos A., Statistical Foundations of Econometric Modelling, Cambridge University Press, Cambridge 1986.
9. Stock J. H., Watson M. W., Introduction to Econometrics, PEARSON
10. Weintraub E.R., Mathematics for Economics. An Integrated Approach, Cambridge University Press, Cambridge 1982
11. Welfe A., Ekonometria. Metody i zastosowania, Polskie Wydawnictwo Ekonomiczne, Warszawa 2009.
12. Wooldridge J.M., Introductory Econometrics. A Modern Approach. Fourth Edition, SOUTH-WESTERN, Canada 2009