Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[50590] Artykuł: Graph Clustering Using Early-Stopped Random WalksCzasopismo: IFIP International Conference on Computer Information Systems and Industrial Management Tom: 1, Strony: 416-428ISSN: 0302-9743 ISBN: 978-3-319-45377-4 Wydawca: SPRINGER INT PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND Opublikowano: Wrzesień 2016 Seria wydawnicza: Lecture Notes in Computer Science Liczba arkuszy wydawniczych: 0.60 Autorzy / Redaktorzy / Twórcy
Grupa MNiSW: Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science) Punkty MNiSW: 15 Klasyfikacja Web of Science: Proceedings Paper DOI Web of Science Keywords: Graph clustering  Random walks  Convergence rate  |
Very fast growth of empirical graphs demands clustering algorithms with nearly-linear time complexity. We propose a novel approach to clustering, based on random walks. The idea is to relax the standard spectral method and replace eigenvectors with vectors obtained by running early-stopped random walks. We abandoned iterating the random walk algorithm to convergence but instead stopped it after the time that is short compared with the mixing time. The computed vectors constitute a local approximation of the leading eigenvectors. The algorithm performance is competitive to the traditional spectral solutions in terms of computational complexity. We empirically evaluate the proposed approach against other exact and approximate methods. Experimental results show that the use of the early stop procedure does not influence the quality of the clustering on the tested real world data sets.