Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[50590] Artykuł:

Graph Clustering Using Early-Stopped Random Walks

Czasopismo: IFIP International Conference on Computer Information Systems and Industrial Management   Tom: 1, Strony: 416-428
ISSN:  0302-9743
ISBN:  978-3-319-45377-4
Wydawca:  SPRINGER INT PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
Opublikowano: Wrzesień 2016
Seria wydawnicza:  Lecture Notes in Computer Science
Liczba arkuszy wydawniczych:  0.60
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Małgorzata Lucińska orcid logoWZiMKKatedra Inżynierii Produkcji5015.00  
Sławomir Wierzchoń50.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Graph clustering  Random walks  Convergence rate 



Abstract:

Very fast growth of empirical graphs demands clustering algorithms with nearly-linear time complexity. We propose a novel approach to clustering, based on random walks. The idea is to relax the standard spectral method and replace eigenvectors with vectors obtained by running early-stopped random walks. We abandoned iterating the random walk algorithm to convergence but instead stopped it after the time that is short compared with the mixing time. The computed vectors constitute a local approximation of the leading eigenvectors. The algorithm performance is competitive to the traditional spectral solutions in terms of computational complexity. We empirically evaluate the proposed approach against other exact and approximate methods. Experimental results show that the use of the early stop procedure does not influence the quality of the clustering on the tested real world data sets.