Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[48294] Artykuł:

Estimating the uncertainty of tensile strength measurement for a photocured material produced by additive manufacturing

Czasopismo: Metrology and Measurement Systems   Tom: 21, Zeszyt: 3, Strony: 553-560
ISSN:  0860-8229
Wydawca:  POLSKA AKAD NAUK, POLISH ACAD SCIENCES, PL DEFILAD 1, WARSZAWA, 00-901, POLAND
Opublikowano: Wrzesień 2014
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Stanisław Adamczak orcid logoWMiBMKatedra Technologii Mechanicznej i Metrologii*337.50  
Jerzy Bochnia orcid logoWMiBMKatedra Technologii Mechanicznej i Metrologii*337.50  
Bożena Kaczmarska orcid logoWZiMKKatedra Inżynierii Produkcji3315.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Article


DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

static tensile test  measurement error  measurement uncertainty 



Abstract:

The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Campbell, I., Bourell, D. and Gibson, I. (2012), Additive manufacturing: rapid prototyping comes of age, Rapid Prototyping Journal, Vol. 18 Issue 4, 255-258.
[2] Puebla, K., Arcaute, K., Quintana, R., Wicker, R.B., (2012), Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography, Rapid Prototyping Journal, Vol. 18 Issue 5, 374-388.
[3] ASTM, Standard 638 (2010), Standard test method for tensile properties of plastics.
[4] Chockalingam, K., Jawahar, N., Chandrasekhar, U., (2006), Influence of layer thickness on mechanical properties in stereolithography, Rapid Prototyping Journal, Vol. 12 Issue 2, 106-113.
[5] ISO, Standard 527-1 (2012), Plastics - determination of tensile properties - Part 1: General principles.
[6] ISO, Standard 6892-1 (2009), Metallic materials - Tensile testing - Part 1: Method oftest at room temperature.
[7] Adamczak, S., Bochnia, J., Kundera, Cz. (2012), Stress and strain measurements in static tensile tests, Metrology and Measurement Systems, No. 3, Vol. XIX, 531 -540.
[8] Inspekt Mini (2011), Universal testing machine Inspekt mini 3kN, Hegewald & Peschke MPT GmbH.
[9] LabMaster software (2011), Version 2.5.3.21.
[10] Adamczak S., Makieła W. (2010), Fundamentals of metrology and quality engineering for mechanical engineers, WNT.
[11] Stępień K., Makieła W. (2013), An analysis of deviations of cylindrical surfaces with the use of wavelet transform, Metrology and Measurement Systems, No. 1, Vol. XX, 139-158.
[12] Cedro L., Janecki D. (2011), Determining of Signal Derivatives in Identification Problems -FIR Differential Filters, Acta Montanistica Slovaca, R 16, cz. 1, 47-54.