Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[48220] Artykuł:

A Concept of Decision Support for Robust Resource—Constrained Scheduling Problems Using Hybrid Approach

Czasopismo: Information Systems Architecture and Technology   Tom: 521, Strony: 67-77
ISSN:  2194-5357
ISBN:  978-3-319-46583-8
Wydawca:  SPRINGER INT PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
Opublikowano: 2016
Seria wydawnicza:  Advances in Intelligent Systems and Computing
Liczba arkuszy wydawniczych:  0.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Sitek orcid logoWEAiIKatedra Systemów Informatycznych *507.50  
Jarosław Wikarek orcid logoWEAiIKatedra Systemów Informatycznych *507.50  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Constraint logic programming  Mathematical programming  Scheduling  Decision support  Hybrid approach  Robust scheduling 



Abstract:

Resource-constrained scheduling problems appear at different levels of decisions in logistics, manufacturing, computer networks, software engineering etc. They are usually characterized by many types of constraints and decision variables which often make them difficult to solve (NP-complete). In addition, these problems are often characterized by the uncertainty of resources, allocations and time. Opportunity to ask questions and get answers about the feasibility/optimality of a schedule in uncertain conditions (e.g. about available resources) is extremely important for decision-makers. This paper presents a hybrid approach to modeling and solving robust constrained scheduling problems where two environments (mathematical programming and constraint logic programming) were integrated. This integration, hybridization as well as a transformation of the problem helped reduce the combinatorial problem substantially. In order to compare the effectiveness of the proposed approach to the mathematical programming approach, illustrative example was implemented in both environments for the same data instances.