Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[46434] Artykuł: Synchronized trajectory tracking control of 3-DOF hydraulic translational parallel manipulatorCzasopismo: International Conference on Mechatronics - Ideas for Industrial Applications. Lodz, POLAND, MAY 12-14, 2014 Tom: 317, Strony: 269-277ISSN: 2194-5357 ISBN: 978-3-319-10990-9 Wydawca: SPRINGER INT PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND Opublikowano: 2015 Seria wydawnicza: Advances in Intelligent Systems and Computing Autorzy / Redaktorzy / Twórcy
Grupa MNiSW: Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science) Punkty MNiSW: 15 Klasyfikacja Web of Science: Proceedings Paper DOI Web of Science Keywords: trajectory tracking control  parallel manipulator  synchronization error  servo-hydraulic system  |
The paper deals with a cross-coupled control approach to the spatial 3-DoF hydraulic translational parallel manipulator. The control system of the cross-coupling control (CCC) has been proposed in order to reduce the contour error for three electro-hydraulic axes. Control of the manipulator takes into account not only the position errors for each drive axis but also synchronization errors of neighboring axes. Cascade control system with inner and outer loop was proposed. Decentralized tracking system allows to adjust the trajectory of disturbances in the internal loops it is based on the defined synchronization of errors for each axis drive. There was specified the synchronization function for the control system which takes account of the errors positioning of each axis. The experiments were performed on a prototype parallel manipulator (3-DoF). The prototype hydraulic manipulator consists of a fixed base and a moving platform, that are connected by the joints with three hydraulic linear axes. They demonstrated improvement in the positioning accuracy of the movement of end effector manipulator. The aim of the research was to examine the effectiveness of synchronous control method with a simplified structure of the control system for the electro-hydraulic manipulator both theoretically and experimentally.