Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[46070] Rozdział:

The solution of poisson equation with discontinuous coefficients using xfem

w książce:   Techniczne wyzwania rozwoju społeczno-gospodarczego kraju i regionów
ISSN:  1897-2691
ISBN:  978-83-63792-31-2
Wydawca:  Wydawnictwo Politechniki Świętokrzyskiej
Opublikowano: Wrzesień 2016
Miejsce wydania:  Kielce
Seria wydawnicza:  Monografie, Studia, Rozprawy
Numer w serii wydawniczej:  M79
Liczba stron:  9
Liczba arkuszy wydawniczych:  0.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Stąpór orcid logoWZiMKKatedra Informatyki i Matematyki Stosowanej**1005.00  

Grupa MNiSW:  Autorstwo rozdziału w monografii naukowej w językach: angielskim, niemieckim, francuskim, hiszpańskim, rosyjskim lub włoskim
Punkty MNiSW: 5




Abstract:

Discontinuous coefficients in the Poisson equation lead to the weak discontinuity in the solution, e.g. the gradient in the field quantity exhibits a rapid change across an interface. In the real world, discontinuities are frequently found (material interfaces, voids, phase-change phenomena) and their mathematical model can be represented by Poisson type equation. In this study, the extended finite element method (XFEM) is used to solve the formulated discontinuous problem. The XFEM solution introduce the discontinuity through nodal enrichment function, and controls it by additional degrees of freedom. This allows to make the finite element mesh independent of discontinuity location. The quality of the solution depends mainly on the assumed enrichment basis functions. In the paper, a new set of enrichments are proposed in the solution of the Poisson equation with discontinuous coefficients in one-dimensional space. The global and local error estimates are used in order to asses the quality of the solution. The stability of the solution is investigated using the condition number for the stiffness matrix. The solution obtained with standard and new enrichment functions are compared and discussed.