Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[45450] Artykuł:

Extension of Model Functionalities for Multi-echelon Distribution Systems Through the Introduction of Logical Constraints

Czasopismo: CHALLENGES IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES   Tom: 440, Strony: 177-188
ISSN:  2194-5357
ISBN:  978-3-319-29357-8
Wydawca:  SPRINGER INT PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
Opublikowano: 2016
Seria wydawnicza:  Advances in Intelligent Systems and Computing
Liczba arkuszy wydawniczych:  0.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Sitek orcid logoWEAiIKatedra Systemów Informatycznych *507.50  
Jarosław Wikarek orcid logoWEAiIKatedra Systemów Informatycznych *507.50  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Multi-echelon distribution systems  Constraint logic programming  Mathematical programming  Logical constraints 



Abstract:

Multi-echelon distribution systems are quite common in supply-chain and city logistic systems. The paper presents a concept of extending functionality of the multi-distribution models by introduction logical constraints. This is possible by using a hybrid approach to modeling and optimization the multi-echelon problems. In the hybrid approach, two environments of mathematical programming (MP) and constraint logic programming (CLP) were integrated. Logical constraints are associated with the transformation of the problem made by the CLP. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP) has been proposed as an illustrative example. The logical constraints on routes, cities etc. were introduced to the standard 2E-CVRP model. The presented approach will be compared with classical mathematical programming on the same data sets (known benchmarks).