[45070] Artykuł: Fuzzy Cognitive Maps and Multi-step Gradient Methods for Prediction: Applications to Electricity Consumption and Stock Exchange ReturnsCzasopismo: INTELLIGENT DECISION TECHNOLOGIES, Smart Innovation Systems and Technologies Tom: 39, Strony: 501-511ISSN: 2190-3018 ISBN: 978-3-319-19857-6 Wydawca: SPRINGER-VERLAG BERLIN, HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY Opublikowano: 2015 Seria wydawnicza: Smart Innovation Systems and Technologies Autorzy / Redaktorzy / Twórcy Grupa MNiSW: Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science) Punkty MNiSW: 15 Klasyfikacja Web of Science: Proceedings Paper ![]() ![]() ![]() Keywords: Fuzzy cognitive map Multi-steps algorithms Gradient method Markov model of gradient Electricity consumption predcition Stock exchange returns prediction |
The paper focuses on the application of fuzzy cognitive map (FCM) with multi-step learning algorithms based on gradient method and Markov model of gradient for prediction tasks. Two datasets were selected for the implementation of the algorithms: real data of household electricity consumption and stock exchange returns that include Istanbul Stock Exchange returns. These data were used in learning and testing processes of the proposed FCM approaches. A comparative analysis of the two-stepmethod of Markov model of gradient, multi-step gradient method and one-step gradient method is performed in order to show the capabilities and effectiveness of each method and conclusions are based on the obtained MSE, RMSE, MAE and MAPE errors.