Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[45004] Artykuł: Conversion of Fiat 0.9 multiair engine to multi-fuellingCzasopismo: Journal of Kones Tom: 20, Zeszyt: 4, Strony: 9-15ISSN: 1231-4005 Opublikowano: 2013 Autorzy / Redaktorzy / Twórcy Grupa MNiSW: Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B) Punkty MNiSW: 6 ![]() ![]() Słowa kluczowe: combustion engines  fuels  fuel supply system  liquefied petroleum gas  natural gas  natural gas  Keywords: combustion engines  fuels  fuel supply system  liquefied petroleum gas  natural gas  |
The development of human civilisation has always been related to an increase in energy demand. The growth of transportation and an increase in the number of automobile vehicles in service produce a rising demand for fuel. Before piston IC engine is replaced with a different effective power source, it is necessary to use gaseous fuels on a larger scale than ever before. The natural resources of gaseous fuels are estimated to be much higher than crude oil reserves. Additionally, engines can run on biogas, i.e. gaseous renewable fuel. The use of gaseous fuels means lowering the harmful effect engines produce on the natural environment. Multi-fuelling, i.e. switching from one fuel to another, could be an advantageous feature of automobile combustion engine, both from the user's standpoint and with respect to environmental concerns. Gaseous fuels have desirable properties that are especially suitable for fuel of spark ignition engines. The paper presents the engine test bench constructed at the Laboratory of Heat Engines of the Kielce University of Technology. The test stand comprises modern spark ignition engine Fiat 0.9 MultiAir and the eddy-current brake. At the test stand, the engine was converted to fuelling with three fuels, namely petrol, LPG gas blends and compressed natural gas (CNG). The engine could run alternatively on the three fuels mentioned above. The stand is equipped with an external unit to control the engine work, which makes it possible to extend the range of the engine investigations.
The development of human civilisation has always been related to an increase in energy demand. The growth of transportation and an increase in the number of automobile vehicles in service produce a rising demand for fuel. Before piston IC engine is replaced with a different effective power source, it is necessary to use gaseous fuels on a larger scale than ever before. The natural resources of gaseous fuels are estimated to be much higher than crude oil reserves. Additionally, engines can run on biogas, i.e. gaseous renewable fuel. The use of gaseous fuels means lowering the harmful effect engines produce on the natural environment. Multi-fuelling, i.e. switching from one fuel to another, could be an advantageous feature of automobile combustion engine, both from the user's standpoint and with respect to environmental concerns. Gaseous fuels have desirable properties that are especially suitable for fuel of spark ignition engines. The paper presents the engine test bench constructed at the Laboratory of Heat Engines of the Kielce University of Technology. The test stand comprises modern spark ignition engine Fiat 0.9 MultiAir and the eddy-current brake. At the test stand, the engine was converted to fuelling with three fuels, namely petrol, LPG gas blends and compressed natural gas (CNG). The engine could run alternatively on the three fuels mentioned above. The stand is equipped with an external unit to control the engine work, which makes it possible to extend the range of the engine investigations.