Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[43822] Artykuł:

A hybrid CP/MP approach to supply chain modelling, optimization and analysis

Czasopismo: Federated Conference on Computer Science and Information Systems (FedCSIS)2014   Strony: 1385-1392
ISBN:  978-83-60810-58-3
Wydawca:  IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
Opublikowano: 2014
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Sitek orcid logoWEAiIKatedra Systemów Informatycznych *10015.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


Web of Science Logo Web of Science    


Abstract:

The paper presents a concept and implementation of a novel hybrid approach to the modelling, optimization and analysis of the supply chain problems. Two environments, mathematical programming (MP) and constraint programming (CP), in which constraints are treated in different was and different methods are implemented, were combined to use the strengths of both.

This integration and hybridization, complemented with an adequate transformation of the problem, facilitates a significant reduction of the combinatorial problem. The whole process takes place at the implementation layer, which makes it possible to use the structure of the problem being solved, implementation environments and the very data. The superiority of the proposed approach over the classical scheme is proved by considerably shorter search time and example-illustrated wide-ranging possibility of expanding the decision and/or optimization models through the introduction of new logical constraints, frequently encountered in practice. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints.

The presented approach will be compared with classical mathematical programming on the same data sets.