Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[43050] Artykuł:

Fuel type recognition by classfiers developed with computational intelligence methods using combustion pressure data and the crankshaft angle at which heat release reaches its maximum

Czasopismo: Procedia Engineering   Tom: 136, Zeszyt: 136, Strony: 353-358
ISSN:  1877-7058
Wydawca:  ELSEVIER SCIENCE BV, SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Opublikowano: 2016
Seria wydawnicza:  Procedia Engineering
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Michał Kekez orcid logoWMiBMKatedra Mechaniki**337.50  
Leszek Radziszewski orcid logoWMiBMKatedra Mechaniki**337.50  
A. Sapietova33.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

diesel engine  combustion  indicator diagram 



Abstract:

A compression ignition engine powered by different fuels requires, for ecological reasons, adjusting the engine work to the injected fuel type. This paper presents a methodology for building classifiers that recognize the type of fuel injected to engine cylinders to accuracy sufficient in practical engine applications. These classifiers were developed using various computational intelligence methods: non-fuzzy classification trees, the proposed method combining several non-fuzzy classification trees into one fuzzy rule-based system, and another method that uses swarm algorithms to optimize classification tree parameters. Analysis of the in-cylinder pressure data measured for the engine running at full load allows calculating the angle at which maximum heat is released. The classifiers were built based on this angle and on other descriptors of pressure changes in the cylinder. Compared features included classifier accuracy, clearness and response time. The methods proposed required developing learning data sets based on experimental data. The measurement data from the tests conducted on an engine test bench were for the engine powered by five different fuels: diesel, fatty acid methyl esters of rapeseed oil, and three blends of these two fuels. The minimum number of consecutive engine cycles necessary to recognize the fuel type was discussed. (C) 2016 The Authors. Published by Elsevier Ltd.