Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[37834] Artykuł:

Coupled Nonlinear Oscillators: Metamorphoses of Amplitude Profiles for the Approximate Effective Equation - the Case of 1:3 Resonance

Czasopismo: Acta Physica Polonica B   Tom: 42, Zeszyt: 10, Strony: 1275-1287
ISSN:  0587-4254
Opublikowano: Czerwiec 2012
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Jan Kyzioł orcid logoWMiBMKatedra Mechaniki**5020.00  
Andrzej Okniński orcid logoWZiMKKatedra Matematyki i Fizyki*5020.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 20
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    


Abstract:

We study dynamics of two coupled periodically driven oscillators. Im- portant example of such a system is a dynamic vibration absorber which consists of a small mass attached to the primary vibrating system of a large mass. Periodic solutions of the approximate effective equation derived in our earlier work are determined within the Krylov–Bogoliubov–Mitropolsky (KBM) approach used to compute the amplitude profiles A(Ω). Depen- dence of the amplitude A of nonlinear resonances on the frequency Ω is much more complicated than in the case of one Duffing oscillator and hence new nonlinear phenomena are possible. In the present paper we study metamorphoses of the function A(Ω) induced by changes of the control parameters near a singular point of this function. It follows that dynamics can be controlled in the neighbourhood of a singular point.



B   I   B   L   I   O   G   R   A   F   I   A
[1] W. Szemplińska-Stupnicka, The Behavior of Non-linear Vibrating Systems, Kluver Academic Publishers, Dordrecht 1990.
[2] J. Awrejcewicz, Bifurcation and Chaos in Coupled Oscillators, World Scientific, New Jersey, 1991.
[3] J. Kozłowski, U. Parlitz, W. Lauterborn, Phys. Rev. E51, 1861 (1995).
[4] K. Janicki, W. Szemplińska-Stupnicka, J. Sound. Vibr. 180, 253 (1995).
[5] A.P. Kuznetsov, N.V. Stankevich, L.V. Turukina, Physica D 238, 1203 (2009).
[6] J.P. Den Hartog, Mechanical Vibrations, 4th edition, Dover Publications, New York 1985.
[7] S.S. Oueini, A.H. Nayfeh, J.R. Pratt, Arch. Appl. Mech. 69, 585 (1999).
[8] A. Okniński, J. Kyzioł, Differential Equations and Nonlinear Mechanics 2006, Article ID 56146 (2006).
[9] A.H. Nayfeh, Introduction to Perturbation Techniques, John Wiley and Sons, New York 1981.
[10] J. Awrejcewicz, V.A. Krysko, Introduction to Asymptotic Methods, Chapman and Hall (CRC Press), New York 2006.
[11] M. Spivak, Calculus on Manifolds, W.A. Benjamin, Inc., Menlo Park, California, 1965.
[12] C.T.C. Wall, Singular Points of Plane Curves, Cambridge University Press, New York 2004.