Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[36904] Artykuł:

The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions

Czasopismo: Experimental Thermal and Fluid Science   Tom: 38, Zeszyt: Complete, Strony: 19-32
ISSN:  0894-1777
Wydawca:  ELSEVIER SCIENCE INC, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
Opublikowano: 2012
Liczba arkuszy wydawniczych:  0.80
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Magdalena Piasecka orcid logoWMiBMKatedra Mechaniki**5030.00  
Beata Maciejewska orcid logoWZiMKKatedra Informatyki i Matematyki Stosowanej**5030.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 30
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

Flow boiling  Boiling incipience  Rectangular minichannel  Liquid crystal thermography  Inverse boundary problem  Trefftz functions 



Abstract:

The paper presents experimental studies of boiling heat transfer in a rectangular, asymmetrically heated minichannel which is 1.0mm deep, 60mm wide, and 360mm long. It is oriented vertically with the bottom-up flow and horizontally at two different positions (180° difference). The investigations focus on the transition from single-phase forced convection to nucleate boiling, that is, from the zone of boiling incipience further to developed boiling. The experiment is carried out with FC-72 at a mass flow rate range of 165kg/(m 2 s) and a pressure of 120-140kPa at the inlet to the minichannel. Owing to the liquid crystal layer located on the heating surface contacting the glass, it is possible to measure the heating wall temperature distribution while increasing the heat flux transferred to the liquid flowing in the minichannel. The flow structure is observed simultaneously on the opposite side of the minichannel through another piece of glass. The first objective of the calculations is to evaluate a heat transfer model and numerical approach to solving the inverse boundary problem, and to calculate the heat transfer coefficient. The inverse problem is solved with the use of sensitivity coefficient method (Beck method) in combination with Trefftz functions. Calculations are supplemented with an error analysis focused on determining the errors including those of heating foil temperature measurements with liquid crystals thermography and of heat transfer coefficient for the transition from a single phase to boiling incipience. The second objective of the paper is to determine the void fraction for cross-sections of selected images for increasing heat fluxes supplied to the heating surface. These results are presented as void fraction dependence along the minichannel length for the selected cross-sections.



B   I   B   L   I   O   G   R   A   F   I   A
1. C. Corty, Ph.D. Thesis, University Michigan, Ann Arbor, 1951.
2. W.M. van Camp, Ph.D. Thesis, Prude University, La Fayette, 1952.
3. H. Bräuer, F. Mayinger, Onset of nucleate boiling and hysteresis effects under forced convection and pool boiling, in: V.J. Dhir, A.E. Bergles (Eds.), ASME-HTD, Pool and External Flow Boiling, 1992, pp. 15-36.
4. A. Bar-Cohen, Hysteresis phenomena at the onset of nucleate boiling, in: V.J. Dhir, A.E. Bergles (Eds.), ASME-HTD, Pool and External Flow Boiling, 1992, pp. 1-14.
5. Bilicki, Z., "Latent heat transport in forced boiling flow", Int. J. Heat Mass Transfer, vol. 26, 1983, p.559-565
6. Z. Bilicki, The relation between the experiment and theory for nucleate forced boiling, in: 4th World Conf. on Exp. Heat Transfer, Fluid Mechanics and Thermodynamics, vol. 2, 1997, pp. 571-578.
7. Bohdal, T.& Czapp, M., "Investigation of zero flow boiling crisis", Proc. Nat. Symp. Heat Mass Transfer, Warsaw-Jablonna, 1986, p.34-40, (in Polish)
8. Bohdal, T., "Development of bubbly boiling in channel flow", Exp. Heat Transfer, vol. 14, 2001, p.199-215
9. Celata, G.P.& Cumo, M.& Setaro, T., "Hysteresis phenomena in subcooled flow boiling of well-wetting fluids", Exp. Heat Transfer, vol. 5, 1992, p.253-275
10. Lazarek, G.M.& Black, S.H., "Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube", Int. J. Heat Mass Transfer, vol. 25, 1982, p.945-960
11. Chin, Y.& Hollingsworth, D.K.& Witte, L.C., "A study of convection in an asymmetrically heated duct using liquid crystal thermography", ASME-HTD, vol. 357-2, 1998, p.63-70
12. Chin, Y.& Witte, L.C.& Hollingsworth, D.K., "Investigation of flow boiling incipience in a narrow rectangular channel using liquid crystal thermography", ASME-HTD, vol. 357, 3, 1998, p.79-86
13. Hollingsworth, D.K., "Liquid crystal imaging of flow boiling in minichannels", Proceedings of 2nd International Conference on Microchannels and Minichannels, Rochester, USA, 2004, p.57-66
14. Lie, Y.M.& Lin, T.F., "Subcooled flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct", Int. J. Heat Mass Transfer, vol. 49, 2006, p.2077-2089
15. Piasecka, M.& Hozejowska, S.& Poniewski, M.E., "Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel", Int. J. Heat Fluid Flow, vol. 25, 2004, p.159-172
16. Piasecka, M.& Poniewski, M.E., "Hysteresis phenomena at the onset of subcooled nucleate flow boiling in microchannels", Heat Transfer Eng., vol. 25, 2004, p.44-51
17. M. Piasecka, M.E. Poniewski, Influence of selected parameters on boiling heat transfer in minichannels, in: Proceedings of 2nd International Conference Microchannels and Minichannels, Rochester, USA, 2004, pp. 515-522.
18. Hozejowska, S.& Piasecka, M.& Poniewski, M.E., "Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical investigations", Int. J. Thermal Sci., vol. 48, 2009, p.1049-1059
19. Yen, T.& Kasagi, N.& Suzuki, Y., "Forced convective boiling heat transfer in microtubes at low mass and high heat fluxes", Int. J. Multiphase Flow, vol. 29, 2003, p.1771-1792
20. M. Piasecka, Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 2002.
21. Kandlikar, S.G.& Grande, W.J., "Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology", Heat Transfer Eng., vol. 25, 2002, p.3-17
22. Kandlikar, S.G., "Fundamental issues related to flow boiling in minichannels and microchannels", Exp. Thermal Fluid Sci., vol. 26, 2002, p.389-407
23. Peng, X.F.& Wang, B.X., "Forced convection and flow boiling heat transfer for liquid flowing through microchannels", Int. J. Heat Mass Transfer, vol. 36, 1993, p.3421-3427
24. Peng, X.F.& Peterson, G.P., "The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels", Int. J. Heat Mass Transfer, vol. 38, 1995, p.755-758
25. Peng, X.F.& Peterson, G.P., "Convective heat transfer and flow friction for water flow in microchannel structures", Int. J. Heat Mass Transfer, vol. 39, 1996, p.2599-2608
26. Peng, X.F.& Hu, H.Y.& Wang, B.X., "Boiling nucleation during liquid flow in microchannels", Int. J. Heat Mass Transfer, vol. 41, 1998, p.101-106
27. Orozco, J.& Hanson, C., "A study of mixed convection boiling heat transfer in narrow gaps", ASME-HTD, vol. 206-2, 1992, p.81-85
28. Chin, Y.& Lakshminarasimhan, M.& Lu, Q.& Hollingsworth, D.K.& Witte, L.C., "Convective heat transfer in vertical asymmetrically heated narrow channels", ASME J. Heat Transfer, vol. 124, 6, 2002, p.1019-1025
29. Ammerman, C.& You, S., "Enhanced convective boiling of FC-87 in small, rectangular, horizontal channels: heat transfer coefficient and CHF", ASME HTD, vol. 357, 1998, p.225-233
30. Wambsganss, M.W.& France, D.M.& Jendrzejczyk, J.A.& Tran, T.A., "Boiling heat transfer in a horizontal small-diameter tube", J. Heat Transfer, vol. 115, 1993, p.963-972
31. Wambsganss, M.W.& Jendrzejczyk, J.A.& France, D.M., "Two-phase flow patterns and transitions in a small, horizontal, rectangular channel", Int. J. Multiphase Flow, vol. 17, 1991, p.327-342
32. Wambsganss, M.W.& France, D.M., "Small circular and rectangular channels boiling with two refrigerants", Int. J. Multiphase Flow, vol. 20, 1996, p.485-498
33. Cortina Dıaz, M.& Boye, H.& Hapke, I.& Schmidt, J.& Staate, Y.& Zhekov, Z., "Investigation of flow boiling in narrow channels by thermographic measurement of local wall temperatures", Microfluid Nanofluid, vol. 2, 2005, p.1-11
34. Brutin, D.& Tadrist, L., "Pressure drop and heat transfer analysis of flow boiling in a minichannel: influence of the inlet condition on two-phase flow stability", Int. J. Heat Mass Transfer, vol. 47, 2004, p.2365-2377
35. Reynaud, S.& Debray, F.& Franc, J.-P.& Maitre, T., "Hydrodynamics and heat transfer in two-dimensional minichannels", Int. J. Heat Mass Transfer, vol. 48, 2005, p.3197-3211
36. J. Shuai, R. Kulenovic, M. Groll, Heat transfer and pressure drop for flow boiling of water in narrow vertical rectangular channels, in: Proceedings of 1st International Conference on Microchannels and Minichannels, Rochester, USA, 2003, pp. 667-673.
37. Sobierska, E.& Kulenovic, R.& Mertz, R.& Groll, M., "Experimental results of flow boiling of water in a vertical microchannel", Exp. Thermal Fluid Sci., vol. 31, 2006, p.111-119
38. Agostini, B.& Bontemps, A., "Vertical flow boiling of refrigerant R 134a in small channels", Int. J. Heat Fluid Flow, vol. 26, 2005, p.296-306
39. Kandlikar, S.G., "Scale effects on flow boiling heat transfer in microchannels: a fundamental perspective", Int. J. Thermal Sci., vol. 49, 2010, p.1073-1085
40. L. Tadrist, Review of two-phase flow instabilities in narrow spaces, in: Proceedings of ECI International Conference on Heat Transfer and Fluid Flow in Microscale, Castelvecchio Pascoli, Italy, 2005. (CD-No.25).
41. Thome, J.R., "Boiling in microchannels: a review of experiment and theory", Int. J. Heat Fluid Flow, vol. 25, 2004, p.128-139
42. Beck, J.V.& Blackwell, B.& Clair Jr., C.R.St., "Inverse Heat Conduction-Ill-Posed Problems", 1985
43. Kurpisz, K.& Nowak, A.J., "Inverse Thermal Problems", 1995
44. Ozisik, M.N.& Orlande, H.R.B., "Inverse Heat Transfer: Fundamentals and Applications", 2000
45. J.V. Beck, Calculation of Surface Heat Flux from an Internal Temperature History, ASME Paper 62-HT-46, 1962.
46. Osman, A.M.& Beck, J.V., "Nonlinear inverse problem for the estimation of time-and-space-dependent heat-transfer coefficients", J. Thermophys. Heat Transfer, vol. 3, 1989, p.146-152
47. Lin, D.T.W.& Yan, W.M.& Li, H.Y., "Inverse problem of unsteady conjugated forced convection in parallel plate channels", Int. J. Heat Mass Transfer, vol. 51, 2008, p.993-1002
48. Kurpisz, K.& Nowak, A.J., "BEM approach to inverse heat conduction problem", Eng. Anal. Bound. Elem., vol. 10, 1992, p.291-297
49. Le Niliot, C.& Lefevre, F., "A parameter estimation approach to solve the inverse problem of point heat sources identification", Int. J. Heat Mass Transfer, vol. 47, 2004, p.827-841
50. Tseng, A.A.& Chen, T.C.& Zhao, F.Z., "Multidimensional inverse transient heat conduction problems by direct sensitivity coefficient method using a finite-element scheme", Numer. Heat Transfer, Part B: Fund., vol. 29, 1996, p.365-380
51. Duda, P.& Taler, J., "A new method for identification of thermal boundary conditions in water-wall tubes of boiler furnaces", Int. J. Heat Mass Transfer, vol. 52, 2009, p.1517-1524
52. Kruk, B.& Sokala, M., "Sensitivity coefficients and heat polynomials in the inverse heat conduction problems, ZAMM", Appl. Math. Mech., vol. 3, 1999, p.693-694
53. Kruk, B.& Sokala, M., "Sensitivity coefficients applied to two-dimensional transient inverse heat conduction problems", J. Appl. Math. Mech., ZAMM, vol. 81, 2000, p.945-946
54. E. Trefftz, Ein Gegenstück zum ritzschen Verfahren, 2, Int. Kongress für Technische Mechanik, Zürich, 1926, pp. 131-137.
55. Kita, E., "Trefftz method: an overview", Adv. Eng. Softw., vol. 24, 1995, p.3-12
56. Herrera, I., "Trefftz method: a general theory", Numer. Methods Partial. Diff. Eq., vol. 16, 2000, p.561-580
57. Cialkowski, M.J.& Frackowiak, A., "Solution of a stationary 2D inverse heat conduction problem by Trefftz method", J. Therm. Sci., vol. 11, 2002, p.148-162
58. Hay, J.L.& Hollingsworth, D.K., "Calibration of micro-encapsulated liquid crystals using hue angle and a dimensionless temperature", Exp. Thermal Fluid Sci., vol. 18, 1998, p.251-257
59. Holman, J.P., "Experimental Methods for Engineers", 1989