Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[36764] Artykuł:

The microstructure and tribological properties of liquid-fuel HVOF sprayed nanostructured WC-12Co coatings

Czasopismo: Surface & Coating Technology   Tom: 220, Zeszyt: Complete, Strony: 313-319
ISSN:  0257-8972
Opublikowano: 2012
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Wojciech Żórawski orcid logoWMiBMCentrum Laserowych Technologii Metali**10040.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 40


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Keywords:

WC-12Co  HVOF  Nanostructure  COF  Wear 



Abstract:

A nanostructured WC-12Co composite coating was prepared by applying the liquid-fuel HVOF spray technique. The microstructure and composition of tungsten carbide nanopowder were analyzed with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). The investigations revealed that the sizes of the original particles were in the range of 50-500nm. The nanostructured coatings had denser structure and higher hardness than the conventional coating. The content of W2C, WC1-x, W and of amorphous phase was also smaller. The coefficient of friction for the HVOF-sprayed nanostructured WC-12Co coating was four times lower than that for the conventionally sprayed WC-12Co coatings. Finally, the nanostructured coating showed higher abrasive resistance than the conventionally sprayed coatings.



B   I   B   L   I   O   G   R   A   F   I   A
1. Fang, Z.Z.& Wang, X.& Ryu, T.& Hwang, K.S.& Sohn, H.Y., Int. J. Refract. Met. Hard Mater., vol. 27, 2009, p.288
2. Chivavibul, P.& Watanabe, M.& Kuroda, S.& Shinoda, C., Surf. Coat. Technol., vol. 202, 3, 2007, p.509
3. Chen, H.& Gou, G.& Tu, M.& Liu, Y., J. Mater. Eng. Perform., vol. 19, 1, 2010, p.1
4. Qiao, Y.& Fischer, T.E.& Dent, A., Surf. Coat. Technol., vol. 172, 1, 2003, p.24
5. Zhao, H.& Ding, Z.& Zhang, Y.& Wang, Q., Proc. Int. Therm. Spray Conf., 2007, p.884
6. Schroeder, S.& Melnyk, C.& Grant, D.& Gansert, R.& Saha, G.& Glenesk, L., Proc. Int. Therm. Spray Conf., 2009, p.403
7. Cho, T.Y.& Yoon, J.H.& Kim, K.S.& Song, K.O.& Joo, Y.K.& Fang, W.& Zhang, S.H.& Youn, S.J.& Chun, H.G. et al., Surf. Coat. Technol., vol. 202, 22-23, 2008, p.5556
8. Stewart, D.A.& Shipway, P.H.& McCartney, D.G., Wear, vol. 225-229, 2, 1999, p.789
9. Guilemany, J.M.& Dosta, S.& Miguel, J.R., Surf. Coat. Technol., vol. 201, 2006, p.1180
10. Baik, K.H.& Kim, J.H.& Seong, B.G., Mater. Sci. Eng., A, vol. 449-451, 2007, p.846
11. Technical Data Sheet - Amperit519, 2007.
12. Bartuli, C.& Valente, T.& Cipri, F.& Bemporad, E.& Tului, M., J. Therm. Spray Technol., vol. 14, 2005, p.187
13. Hewitt, S.A.& Laoui, T.& Kibble, K.K., Int. J. Refract. Met. Hard Mater., vol. 27, 1, 2009, p.66
14. Żórawski, W.& Burakowski, T., Inżynieria Materiałowa, vol. 6, 2008, p.608, (in polish)
15. Liao, H.& Normand, B.& Coddet, C., Surf. Coat. Technol., vol. 124, 2000, p.235
16. Zhu, Y.& Ding, C.X.& Yukimura, K.& Xiao, T.D.& Strutt, P.R., Ceram. Int., vol. 27, 2001, p.669
17. Ageorges, H.& Vert, R.& Darut, G.& Zishuan, F., Proc. Int. Therm. Spray Conf., 2009, p.1195