Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[35401] Artykuł: ANN constitutive material model in the shakedown analysis of an aluminum structureCzasopismo: Computer Assisted Methods in Engineering and Science Tom: 21, Zeszyt: 1, Strony: 49-58ISSN: 2299-3649 Opublikowano: 2014 Autorzy / Redaktorzy / Twórcy
Grupa MNiSW: Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B) Punkty MNiSW: 6 ![]() Słowa kluczowe: sztuczna sieć neuronowa  problem odwrotny  modelowanie materiałów  metoda elementów skończonych  hybryda  Keywords: artificial neural network  inverse problem  material modeling  finite element method  hybrid program  shakedown analysis  |
The paper presents the application of artificial neural networks (ANN) for description of the Ramberg-Osgood (RO) material model, representing the nonlinear strain-stress relationship of ε(σ). A neural model of material (NMM) is a feed-forward layered neural network (FLNN) whose parameters were determined using the penalized least squares (PLS) method. A FLNN performing the inverse problem: σ(ε), using pseudo empirical patterns, was developed. Two models of NMM were developed, i.e. a standard model (SNN) and a model based on Bayesian inference (BNN). The properties of the models were compared on the example of a reference truss structure. The computations were performed by means of the hybrid FEM/NMM program, in which NMM developed previously described the current model of the material, and made it possible to explicitly build a tangent operator Et= dσ/dε. The neural model of material was applied to the analysis of the shakedown of load carrying capacity of an aluminum truss.