Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
[30595] Artykuł: A spectral clustering algorithm based on eigenvector localizationCzasopismo: Proceedings of 13-th International Conference, ICAISC 2014, Artificial Intelligence and Soft Computing, ed. L. Rutkowski, Lecture Notes in Computer Science, Springer Verlag Tom: 8468, Zeszyt: 2, Strony: 749-759ISSN: 0302-9743 ISBN: 978-3-319-07175-6 Wydawca: SPRINGER-VERLAG BERLIN, HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY Opublikowano: Czerwiec 2014 Seria wydawnicza: Lecture Notes in Artificial Intelligence Liczba arkuszy wydawniczych: 0.60 Autorzy / Redaktorzy / Twórcy
Grupa MNiSW: Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science) Punkty MNiSW: 15 Klasyfikacja Web of Science: Proceedings Paper Pełny tekst Web of Science Keywords: spectral clustering  nearest neighbor graph  signless Laplacian  |
This paper introduces the SpecLoc algorithm that performs clustering without pre-assigning the number of clusters. This is achieved by the use of a special property of matrix eigenvectors, called weak localization. The signless Laplacian matrix is created on the basis of a mutual neighbor graph. A new measure, introduced in this work, allows for selection of weakly localized eigenvectors. Experiments confirm good performance of the proposed algorithm for weakly separated groups of real datasets, including cancer gene expression matrices.