Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[29235] Artykuł:

Ray-tracing simulations of spherical Johann diffraction spectrometer for in-beam X-ray experiments

Czasopismo: Nuclear Inst. and Methods in Physics Research A   Tom: 753, Strony: 121-130
ISSN:  0168-9002
Wydawca:  ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Opublikowano: 2014
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Jagodziński orcid logoWZiMKKatedra Matematyki i Fizyki*1725.00  
Marek Pajek17.00  
Dariusz Banaś17.00  
Heinrich F. Beyer17.00  
Martino Trassinelli17.00  
Thomas Stöhlker17.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 25
Klasyfikacja Web of Science: Article


DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

Monte-Carlo simulations  Ray-tracing  X-ray diffraction  Crystal rocking curve  Spherical Johann spectrometer  High-resolution X-ray spectroscopy 



Abstract:

The results of the Monte-Carlo ray-tracing simulations for a Johann-type Bragg spectrometer with spherically curved-crystal designed to detect the X-rays from a fast-moving source are reported. These calculations were performed to optimize the X-ray spectrometer to be used at the gas-target installed at ion storage ring for high-resolution X-ray experiments. In particular, the two-dimensional distributions of detected photons were studied using the Monte-Carlo method both for the stationary and moving X-ray sources, taking into account a detailed description of X-ray source and X-ray diffraction on the crystal as well as a role of the Doppler effect for in-beam experiments. The origin of the asymmetry of observed X-ray profiles was discussed in detail and the procedure to derive a precise (sub-eV) X-ray transition energy for such asymmetric profiles was proposed. The results are important for the investigations of 1s2pP23→1s2sS13 intrashell transition in excited He-like uranium ions in in-beam X-ray experiments.



B   I   B   L   I   O   G   R   A   F   I   A
1. Johann, H.H., Zeitschrift für Physik, vol. 69, 1931, p.185
2. Johansson, T., Zeitschrift für Physik, vol. 82, 1933, p.507
3. von Hamos, L., Annals of Physics, vol. 409, 1933, p.716
4. von Hamos, L., Annals of Physics, vol. 411, 1934, p.252
5. Eichler, J.& Meyerhof, W.E., "Relativistic Atomic Collision", 1995
6. Banaś, D. et al., Journal of Physics: Conference Series, vol. 58, 2007, p.415
7. Trassinelli, M. et al., Canadian Journal of Physics, vol. 85, 2007, p.441
8. M. Sánchez del Río, Proceedings of SPIE 3448 (1998) 230.
9. S. Stepanov, Proceedings of SPIE 5536 (2004) 16.
10. F. Cerrina, Proceedings of SPIE 503 (1984) 68.
11. F. Cerrina, et al., SHADOW Primer, 〈http://www.nanotech.wisc.edu/shadow/documentation/primer.pdf〉.
12. Beyer, H.F. et al., Nuclear Instruments and Methods in Physics Research Section A, vol. 272, 1988, p.895
13. Beyer, H.F., Nuclear Instruments and Methods in Physics Research Section A, vol. 400, 1997, p.137
14. Gumberidze, A. et al., Physical Review Letters, vol. 92, 2004, p.203004
15. Fritzsche, S. et al., Journal of Physics B, vol. 38, 2005, p.S707
16. Gumberidze, A. et al., Hyperfine Interactions, vol. 199, 2011, p.59
17. Artemyev, A.N. et al., Physical Review A, vol. 71, 2005, p.062104
18. Bruhns, H. et al., Physical Review Letters, vol. 99, 2007, p.113001
19. Kubiček, K. et al., Journal of Physics: Conference Series, vol. 163, 2009, p.012007
20. Amaro, P. et al., Physical Review Letters, vol. 109, 2012, p.043005
21. Schlesser, S. et al., Physical Review A, vol. 88, 2013, p.022503
22. Covita, D.S. et al., Physical Review Letters, vol. 102, 2009, p.023401
23. Anagnostopoulos, D.F. et al., Physical Review Letters, vol. 91, 2003, p.240801
24. Gotta, D. et al., Nuclear Physics A, vol. 660, 1999, p.283
25. Beiersdorfer, P. et al., Journal of Physics: Conference Series, vol. 163, 2009, p.012022
26. Thorn, D.B. et al., Physical Review Letters, vol. 103, 2009, p.163001
27. Trassinelli, M. et al., Europhysics Letters, vol. 87, 2009, p.63001
28. Trassinelli, M. et al., Physica Scripta, vol. T144, 2011, p.014003
29. 〈http://www.agner.org/random〉.
30. Bragg, W.H.& Bragg, W.L., Proceedings of the Royal Society of London Series: A, vol. 88, 1913, p.428
31. Authier, A., Zeitschrift für Kristallographie, vol. 227, 2012, p.36
32. Warren, B.E., "X-Ray Diffraction", 1969
33. Zachariasen, W.H., "Theory of X-ray Diffraction in Crystals", 1967
34. Als-Nielsen, J. et al., "Elements of Modern X-ray Physics", 2011, 2nd edition.
35. Compton, A.H. et al., "X-rays in Theory and Experiment", 1935
36. CXRO: The Center for X-ray Optics, 〈http://cxro.lbl.gov〉.
37. Henke, B.L. et al., Atomic Data and Nuclear Data Tables, vol. 54, 1993, p.181
38. XOP Documentation, 〈http://www.esrf.eu/computing/scientific/xop2.1/PDF/xop-doc.pdf〉.
39. Sánchez del Río, M. et al., Proceedings of SPIE, vol. 3151, 1997, p.312
40. White, J.E., Journal of Applied Physics, vol. 21, 1950, p.855
41. M. Sánchez del Río, et al., AIP Conference Proceedings 521 (2000) 287.
42. Erola, E. et al., Journal of Applied Crystallography, vol. 23, 1990, p.35
43. Deslattes, R.D. et al., Reviews of Modern Physics, vol. 75, 2003, p.35
44. Krause, M.O. et al., Journal of Physical and Chemical Reference Data, vol. 8, 1979, p.329
45. Johnson, W.R. et al., Advances in Atomic, Molecular, and Optical Physics, vol. 35, 1995, p.255