Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[28970] Artykuł:

A study of flow boiling heat transfer in a rectangular minichannel using liquid crystal and infrared thermography

Czasopismo: Transactions of the Institute of Fluid-Flow Machinery   Zeszyt: 128, Strony: 97-118
ISSN:  0079-3205
Opublikowano: Grudzień 2015
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Magdalena Piasecka orcid logoWMiBMKatedra Mechaniki**503.50  
Kinga Strąk orcid logoWMiBMKatedra Mechaniki**503.50  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 7


Pełny tekstPełny tekst     Web of Science LogoYADDA/CEON    
Keywords:

Flow boiling heat transfer  Rectangular minichannel  Enhanced foil surface  Liquid crystal thermography  Infrared thermography 



Abstract:

This paper presents results of flow boiling heat transfer in two parallel asymmetrically heated vertical minichannels. The heating element for Fluorinert FC-72 flowing in the minichannels was a thin foil with an enhanced surface on the side in contact with the fluid. The channels were observed from both sides through glass panes. Two of the panes allowed us to observe the two phase flow patterns on the enhanced surface of the foil, while the other two panes were used for simultaneous measurement of temperature on the smooth side of the foil. The temperature was measured by applying two contactless methods. One was liquid crystal thermography (LCT), which required treating the foil surface with thermochromic liquid crystals (TLCs), and the other was infrared thermography (IRT), which required coating the foil surface with black paint. Calculations were performed on the basis ofa one-dimensional model to determine the heat transfer coefficient at the foil-fluid interface from the Robin boundary condition. The experimental results were graphically represented as the foil temperature and the heat transfer coefficient against the distance from the minichannel inlet and as LCT and IRT images obtained for saturated boiling.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Piasecka M., Maciejewska B.: Enhanced heating surface application in a minichannel flow and the use of the FEM and Trefftz functions for the solution of inverse heat transfer problem. Exp. Therm. Fluid Sci. 44(2013), 23–33.
[2] Saisorn S., Kaew-On J., Wongwises S.: An experimental investigation of flow boiling heat transfer of R-134a in horizontal and vertical mini- channels. Exp. Therm. Fluid Sci. 46(2013), 232-244.
[3] Kandlikar S.G., GrandeW.J.: Evolution of microchannel flow passages- thermohydraulic performance and fabrication technology. Heat Transfer Eng. 25(2002), 3–17.
[4] Shah R.K.: Classification of Heat Exchangers. Hemisphere, Washington DC, 1981, 9-46.
[5] Kew P.A., Cornwell K.: Correlations for the prediction of boiling heat transfer in small diameter channels. Appl. Therm. Eng. 17(1977), 705– 715.
[6] Bohdal T: Bubbly boiling of environmental-friendly refrigerating media. Int. J. Heat Fluid Fl. 21(2000), 4, 449–455.
[7] Bohdal T.: Development of bubbly boiling in channel flow. Exp. Heat Transfer 4(2001), 199–215.
[8] Bohdal T., Kuczyński W.: Investigation of boiling of refrigerating medium under conditions of impulse disturbances. Exp. Heat Transfer 17(2004), 2, 103–117.
[9] Bohdal T., Charun, H., Sikora M.: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels.Int. J. Heat Mass Tran. 54(2011), 1963–1974.
[10] Kuczyński W., Bohdal T., Charun H.: Impact of periodically generated hydrodynamic disturbances on the condensation efficiency of R134a refrigerant in pipe mini-channels. Exp. Heat Transfer 26(2013), 1, 64–84.
[11] Kuczyński W., Charun H., Bohdal T.: Influence of hydrodynamic instability on the heat transfer coefficient during condensation of R134a and R404A refrigerants in pipe mini-channels. Int. J. Heat Mass Tran. 55(2012), 4, 1083–1094.
[12] Dutkowski K: Experimental investigations of Poiseuille number laminar flow of water and air in minichannels. Int. J. Heat Mass Tran. 51(2008), 5983–5990.
[13] Dutkowski K.: Two-phase pressure drop of air-water in minichannels. Int. J. Heat Mass Tran. 52(2009), 5185–5192.
[14] Dutkowski K.: Influence of the flashing phenomenon on the boiling curve of refrigerant R134a in minichannels. Int. J. Heat Mass Tran. 53(2010), 1036–1043.
[15] Dutkowski K.: Single phase pressure drop in minichannels. Transactions IFFM 121(2008), 17–32.
[16] Mikielewicz D., Mikielewicz J., Tesmar J.: Improved semi-empirical method for determination of heat transfer coefficient in flow boiling in conventional and small diameter tube. Int. J. Heat Mass Tran. 50(2007), 3949–3956.
[17] Mikielewicz D.: A new method for determination of flow boiling heat transfer coefficient in conventional-diameter channels and minichannels. Heat Transfer Eng. 31(2010), 276–287.
[18] Mikielewicz D., Mikielewicz J.: A common method for calculation of flow boiling and flow condensation heat transfer coefficients in minichannels with account of nonadiabatic effects. Heat Transfer Eng. 32(2011), 1173–1181.
[19] Mikielewicz D., Klugmann M., Wajs J.: Experimental investigation of M-shape heat transfer coefficient distribution of R123 flow boiling in small-diameter tubes. Heat Transfer Eng. 33(2012), 584–595.
[20] Cieśliński J.T.: Nucleate pool boiling on porous metallic coatings. Exp. Therm. Fluid Sci. 25(2002), 7, 557–564.
[21] Cieśliński J., Krasowski K.: Heat transfer during pool boiling of water, methanol, and R141B on porous coated horizontal tube bundles. J. Enhanc. Heat Tran. 20(2013), 2, 165–177.
[22] Cieśliński J.T., Targański W.: Investigation of R22 and R134a flow boiling in enhanced tubes. Transactions IFFM 112(2003), 21–36.
[23] Dawidowicz B., Cieśliński J.: Heat transfer and pressure drop during flow boiling of pure refrigerants and refrigerant/oil mixtures in tube with porous coating. Int. J. Heat Mass Transf. 55(2012), 9-10, 2549–2558.
[24] Cieśliński J.T.: Flow and pool boiling on porous coated surfaces. Rev. Chem. Eng. 27(2011), 179–190.
[25] Wilk J.: Convective mass/heat transfer in the entrance region of the short circular minichannel. Exp. Therm. Fluid Sci. 38(2012), 107–114
[26] Wilk J.: Experimental investigation of convective mass/heat transfer in short minichannel at low Reynolds numbers. Exp. Therm. Fluid Sci. 33(2009), 267–272.
[27] Ciałkowski M.J., Frąckowiak A.: Heat Functions and their Use in Solving Problems of Thermal Conductivity and Mechanics. Poznań University of Technology, Poznań 2002.
[28] Orzechowski T.: Determining local values of the heat transfer coefficient on a fin. Exp. Therm. Fluid Sci. 31(2007), 8, 947–955.
[29] Orzechowski T., Tyburczyk A.: Two-phase cooling efficiency on the basis of fin with mesh structure. Exp. Therm. Fluid Sci. 87(2011), 7, 48–51.
[30] Orzechowski T., Tyburczyk A.: Boiling heat transfer on fins – experimental and numerical procedure. EPJ Web of Conf. 67(2014), 02088.
[31] Wójcik T.M: Experimental investigations into intra-layer boiling crisis and hysteresis in metal. Fibrous. Transactions IFFM 112(2003), 91– 102.
[32] Wójcik T.M., Poniewski M.E.: Experimental investigation and modeling of boiling heat transfer hysteresis on porous surfaces. J. Enhanc.Heat Tran. 5(2008), 4, 289–301.
[33] Wójcik T.M.: Boiling heat transfer on new capillary-porous coverings.In: Proc. Int. Conf. on Exp. Fluid Mech. Liberec, Nov. 25-27, 2009, 426–431.
[34] Pastuszko R.: Temperature field in the-layer fins immersed in boiling water. Transactions 112(2003), 103–118.
[35] Pastuszko R.: Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels. Exp. Therm. Fluid Sci. 32(2008), 1564–1577.
[36] Pastuszko R.: Pool boiling on micro-fin array with wire mesh structures. Int. J. Therm. Sci. 49(2010), 2289–2298.
[37] Pastuszko R.: Pool boiling for extended surfaces with narrow tunnels –Visualization and a simplified model. Exp. Therm. Fluid Sci. 38(2012), 149–164.
[38] Piasecka M., Hożejowska S., Poniewski M.E.: Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel. Int. J. Heat Fluid Fl. 25(2004), 159–172.
[39] Piasecka M., Poniewski M.E.: Hysteresis phenomena at the onset of subcooled nucleate flow boiling in microchannels. Heat Transfer Eng. 25(2004), 3, 44–51.
[40] Piasecka M., Poniewski M.E.: Flow boiling incipience in minichannels. in: Proc. 3rd Int. Symp. on Two-phase Flow Modelling and Experimentation, Pisa 2004 (CD-ROM–8, mt-13).
[41] Piasecka M.: Heat transfer mechanism, pressure drop and flow patterns during FC-72 flow boiling in horizontal and vertical minichannels with enhanced walls. Int. J. Heat Mass Tran. 66(2013), 72–488.
[42] Piasecka M.: An application of enhanced heating surface with minirecesses for flow boiling research in minichannels. Heat Mass Tran. 49(2013), 261–271.
[43] Piasecka M.: Flow boiling heat transfer in a minichannel with enhanced heating surface. Heat Transfer Eng. 35(2014), 10, 903–912.
[44] Piasecka M.: The use of enhanced surface in flow boiling heat transfer in a rectangular minichannels. Exp. Heat Transfer 27(2014), 231–255.
[45] Piasecka M.: Correlations for flow boiling heat transfer in minichannels with various orientations. Int. J. Heat Mass Tran. 81(2015), 114–121.
[46] Piasecka M., Maciejewska B.: The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions. Exp. Therm. Fluid Sci. 38(2012), 19–32.
[47] Piasecka M., Maciejewska B.: Enhanced heating surface application in a minichannel flow and use the FEM and Trefftz functions to the solution of inverse heat transfer problem. Exp. Therm. Fluid Sci. 44(2013), 23–33.
[48] Kaniowski R., Poniewski M.E.: Measurements of two-phase flow patterns and local void fraction in vertical rectangular minichannel. Arch.Thermodyn. 34(2014), 2, 3–21.
[49] Hożejowska S., Kaniowski R., Poniewski M.E.: Application of adjustment calculus to the Trefftz method for calculating temperature field of the boiling liquid flowing in a minichannel. Int. J. Numer Method. H. 24 (2014), 811–824.
[50] Orzechowski T.: Heat transfer on ribs with microstructured surface. Kielce University of Technology, Monographs, Studies, Hearings 39(2003) (in Polish).
[51] Piasecka M.: Determination of the temperature field using liquid crystal thermography and analysis of two-phase flow structures in research on boiling heat transfer in a minichannel. Metrol. Meas. Syst. 20(2013), 2, 205–216.
[52] Yunus A., Cengel, Turner R. H.: Fundamentals of Thermal-fluid Sciences. McGraw – Hill Higher Education, 2001.
[53] Wiśniewski S., Wisniewski T.S.: Heat Transfer. WNT, Warsaw 2012 (in Polish).
[54] User’s manual ThermaCam B640, P640, SC640. Publ. No. 155850 Rev.a 201-ENGLISH (EN), 2007.
[55] Piasecka M..: Correlations for flow boiling heat transfer in minichannels with various orientations. Heat Mass Transfer 50(2014), 1053– 1063.
[56] Krysicki W.: Probability theory and mathematical statistics. Practice exercises, Part 2. PWN, Warsaw 2000 (in Polish).