Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[26070] Artykuł:

Heat transfer coefficient for flow boiling in an annular mini gap

Czasopismo: The European Physical Journal Web of Conferences   Tom: 114, Zeszyt: No 02042, Strony: 1-7
ISSN:  2100-014X
Wydawca:  E D P SCIENCES, 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE
Opublikowano: Marzec 2016
Seria wydawnicza:  EPJ Web of Conferences
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Sylwia Hożejowska orcid logoWZiMKKatedra Informatyki i Matematyki Stosowanej**4015.00  
Tomasz MusiałWMiBM205.00  
Magdalena Piasecka orcid logoWMiBMKatedra Mechaniki**4010.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    


Abstract:

The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface – fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two–phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.