Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[25810] Artykuł:

A Hybrid Multi-Objective Programming Framework for Modeling and Optimization of Supply Chain Problems

Czasopismo: Proceedings of the Federated Conference on Computer Science and Information Systems-FedCSIS 2015   Tom: 5, Strony: 1631-1640
ISSN:  2300-5963
ISBN:  978-8-3608-1066-8
Wydawca:  IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
Opublikowano: 2015
Seria wydawnicza:  ACSIS-Annals of Computer Science and Information Systems
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Sitek orcid logoWEAiIKatedra Systemów Informatycznych *10015.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


DOI LogoDOI     Web of Science Logo Web of Science    


Abstract:

This paper presents a hybrid programming framework for solving multi-objective optimization problems in supply chain. The proposed approach consists of the integration and hybridization of two modeling and solving environments, i.e., constraint logic programming and mathematical programming, to obtain a programming framework that offers significant advantages over the classical approach derived from operational research. The strongest points of both components are combined in the hybrid framework, which by introducing transformation allows a significant reduction in size of a problem and the optimal solution is found a lot faster. This is particularly important in the multi-objective optimization where problems have to be solved over and over again to find a set of Pareto-optimal solutions. An over two thousand-fold reduction in size was obtained for the illustrative examples together with a few hundred-fold reduction in the speed of finding the solution in relation to the mathematical programming method. In addition, the proposed framework allows the introduction of logical constraints that are difficult or impossible to model in operational research environments.