Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[24525] Artykuł:

Application of the finite element method to the determining of boiling heat transfer coefficient for minichannel flow

Czasopismo: Archives of Thermodynamics   Tom: 34, Zeszyt: 1, Strony: 55-69
ISSN:  1231-0956
Opublikowano: 2013
Liczba arkuszy wydawniczych:  0.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Magdalena Piasecka orcid logoWMiBMKatedra Mechaniki**508.00  
Beata Maciejewska orcid logoWZiMKKatedra Informatyki i Matematyki Stosowanej**508.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 8


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

przepływ ciepła  przepływ wrzenia  metoda elementów skończonych 


Keywords:

heat transfer  incipience of flow boiling  finite element method 



Abstract:

Miniature heat exchangers are used to provide higher cooling capacity for new technologies. This means a reduction in their size and cost but the identical power. The paper presents the method for determination of boiling heat transfer coefficient for a rectangular minichannel of 0.1 mm depth, 40 mm width and 360 mm length with asymmetric heating. Experimental research has focused on the transition from single phase forced convection to nucleate boiling, i.e., the zone of boiling incipience. The 'boiling front' location has been determined from the temperature distribution of the heated wall obtained from liquid crystal thermography. The experiment has been carried out with R-123, mass flux 220 kg/(m2s), pressure at the channel inlet 340 kPa. Local values of heat transfer coefficient were calculated on the basis of empirical data from the experiment following the solution of the two-dimensional inverse heat transfer problem. This problem has been solved with the use of the finite element method in combination with Trefftz functions. Temperature approximates (linear combinations of Trefftz functions) strictly fulfill the governing equations. In presented method the inverse problem is solved in the same way as the direct problem. The results confirmed that considerable heat transfer enhancement takes place at boiling incipience in the minichannel flow boiling. Moreover, under subcooling boiling, local heat coefficients exhibit relatively low values.



B   I   B   L   I   O   G   R   A   F   I   A
1. Piasecka M., Maciejewska B.: The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions. Exp. Therm. Fluid Sci. 38(2012), 19-32.
2. Hozejowska S., Piasecka M., Poniewski M.E.: Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical investigations. Int. J. Therm. Sci. 48(2009), 1049-1059.
3. Piasecka M.: An investigation into the influence of different parameters on the onset of boiling in minichannels. Arch. Thermodyn. 33(2012), 67-90.
4. Alifanow O.M.: Inverse heat transfer problems. Springer-Verlag, Berlin 1994.
5. Kurpisz K., Nowak A.J.: Inverse thermal problems. Int. Series on Comput. Mech. Pub., Southampton, and Boston, 1995.
6. Ozisik M.N., Orlande H.R.B.: Inverse heat transfer: fundamentals and applications. Taylor & Francis, New York 2000.
7. Trefftz E.: Ein Gegenstück zum Ritzschen Verfahren. 2 Int. Kongress für Technische Mechanik, Zürich (1926), 131-137.
8. Kita E.: Trefftz method: an overview. Adv. Eng. Softw. 24(1995), 3-12.
9. Zielinski A.P.: On trial functions applied in the generalized Trefftz method. Adv. Eng. Softw. 24(1995), 147-155.
10. Herrera I.: Trefftz method: A general theory. Numer. Meth Part. D. E. 16(2000), 561-580.
11. Ciałkowski M., Frąckowiak A.: Heat functions and their application to solving of heat conduction and mechanics problems. WPP, Poznań 2000 (in Polish).
12. Cialkowski M.J., Frąckowiak A.: Solution of a stationary 2D inverse heat conduction problem by Trefftz method. J. Therm. Sci. 11(2002), 148-162.
13. Cialkowski M.J.: New Type of basic functions of FEM in application to solution of inverse heat conduction problem. J. Therm. Sci. 11(2002), 163-171.
14. Kompis V., Toma M., Zmindak M., Handrik M.: Use of Trefftz functions in non-linear BEM/FEM. Comput. Struct. 82(2004), 2351-2360.
15. Maciejewska B.: Application of the modified method of finite elements for identification of temperature of a body heated with a moving heat source. J. Theor. App. Mech. 42(2004), 771-787.