Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[23994] Artykuł:

Application of cohesive model in fracture mechanics by WARP3D

Czasopismo: Journal of KONES Powertrain and Transport   Tom: 15, Zeszyt: 1, Strony: 69-77
ISSN:  1231-4005
Opublikowano: 2008
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Jarosław Gałkiewicz orcid logoWMiBMKatedra Podstaw Konstrukcji Maszyn*1006.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 6


Pełny tekstPełny tekst     Web of Science LogoYADDA/CEON    
Keywords:

finite element method  cohesive model  fracture mechanics  fracture process 



Abstract:

In the paper cohesive model implemented in WARP3D code and an example simulation of crack growth analysis ispresented. Cohesive model is an effective tool for a crack growth analysis and it was a main reason to invent it. For the "dassica" constitutive equation the crack growth simulation in the finite element method (FEM) is not possible without an additional crack growth criterion. In the commercial FEM codes cohesive model is not very popular unfortunately. Usually it can be applied as user implemented elements. However there is a code free of charge with high reliability acknowledged in the literature with cohesive elements in standard library. This program is WARP3D and it is dedicated to numerical simulations of three dimensional fracture mechanics problems. The Dugdale's model, void creation, the cellular model of material, the cohesion-decohesion curve, behaviour of cohesive element, comparison of curve shapes for brittle and ductile fracture, the profile of the cohesive element in WARP3D, specimen geometry, changes of crack shape under increasing load, opening stress distribution in the uncracked ligament are presented in the paper.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Barenbaltt, G. I., The Formation of Equilibrium Cracks During Brittle Fracture: General Ideas and Hypotheses, Axially Symmetric Cracks, Applied Mathematics and Mechanics (PMM), Vol. 23, pp.622-636, 1959.
[2] Dugdale, D. S., Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, Vol. 8, pp. 100-108, 1960.
[3] Zheltov, Yu. P., Kristianovich, S. A., O mekhanizme gidravlicheskovorazryva neftenosnogo plasta, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 11, 1955.
[4] Broberg, K. B., Cracks and Fracture, Academic Press, Cambridge, pp. 5-26, 1999.
[5] Tvergaard, V., Hutchinson, J. W., The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids, J. Mech. Phys. Solids, Vol. 40, No. 6, pp. 1377-1397, 1992.
[6] de Borst, R., Numerical Aspects of Cohesive-zone Models, Eng. Frac. Mech., Vol. 70, pp. 1743-1757, 2003.
[7] Scheider, I., Schodel, M., Brocks, W., Schonfeld, W., Crack Propagation Analyses with CTOA and Cohesive Model: Comparison and Experimental Validation, Eng. Frac. Mech., Vol. 73, pp. 252-263, 2006.
[8] Chen, C. R., Kolednik, O., Heerens, J., Fischer, F. D., Three-dimentional Modeling of Ductile Crack Growth: Cohesive Zone Parameters and Crack Tip Triaxiality, Eng. Frac. Mech., Vol. 72, pp. 2072-2094, 2005.
[9] Cornec, A., Schneider, I., Schwalbe, K. H., On the Practical Application of the Cohesive Model, Eng. Frac. Mech., Vol. 70, pp. 1963-1987, 2003.
[10] Kroon, M., Faleskog, J., Micromechanics of Cleavage Fracture Initiation in Ferritic Steels by Carbide Cracking, J. Mech. Phys. Solids, Vol. 53, pp.171-196, 2005.
[11] Gao, X., Dodds Jr., R. H., Constraint Effects on the Ductile-to-brittle Transition Temperature of Ferritic Steels: a Weibull Stress Model, Int. J. Frac., Vol. 102, No. 1, pp.43-69, 2000.
[12] Hampton, R.W., Nelson D., Stable crack growth and instability prediction in thin plates and cylinders, Eng. Frac. Mech., Vol. 70, No. 3-4, pp. 469-491, 200