Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: The aim of the work is to highlight road traffic accident patterns in the context of interrelations between road characteristics and a traffic safety threat. The actual data concerning multi-vehicle accidents without pedestrians on non-urban roads in a chosen region of Poland was the subject of the research. The roadway and roadside data at the accident site have been combined with the crash data that define the roadway hazard, i.e. driver's behaviour, type and accident severity. The data were subject to multivariate segmentation by means of such conceptual grouping techniques as the K-means clustering algorithm and competitive artificial neural networks. The Ward's method was used as a supporting tool in establishing the final number of accident profiles. Six distinct accident patterns have been recognised, quantified and labelled, where the first, second and third one are typical of rural areas, the fourth and fifth - of built-up areas, and the last one - of intersections. The analysis indicates that apart from threat factors, the following road related features play an important role in road accident profiling tasks: area type and area development level, roadway surface condition, intersection indicator, shoulder type, and also to some extent: lighting conditions, shoulders' width, and horizontal curve radius.
B I B L I O G R A F I A1. Anderson I.B., Bauer K.M., Harwood W.H., Fitzpatric K.: Relationship to Safety of Geometric Design Consistency Measures for Rural Two-Lane Highways. In Transportation Research Record 1784, Paper No. 02-2302, TRB, Washington, D.C, 2002, 108-114.
2. Baltes M. R.: Descriptive Analysis of Crashes Involving Pedestrians in Florida, 1990-1994. In Transportation Research Record: Journal of the Transportation Research Board, No. 1636, Washington D.C., 1998, 138-145.
3. Berg H-Y., Gregersen N. P., Laflamme L.: Typical patterns in road-traffic accidents during driver training. An explorative Swedish national study. Accident Analysis and Prevention, No. 36, 2004, 603-608.
4. Cichosz P.: Systemy uczace sie. Wydawnictwa Naukowo-Techniczne, Warszawa, 2000. (in Polish).
5. Das A., Abdel-Aty M., Pande A., Santos J. B.: Severity analysis of crashes on multilane arterials using conditional inference forests. CD-ROM - the TRB 88th Annual Meeting of the Transportation Research Board, Washington D.C., 2009.
6. Delen D., Sharda R., Bessonov M.: Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis and Prevention, 38, 2006, 434-444.
7. Dixon K. K., Liebler M., Hunter M.: Urban roadside safety - cluster crash evaluation. CD-ROM - the TRB 88th Annual Meeting of the Transportation Research Board, Washington D.C., 2009.
8. Garber N., Ehrhart A.: Effect of Speed, Flow, and Geometric Characteristics on Crash Frequency for Two-Lane Highways. In Transportation Research Record: Journal of the Transportation Research Board, No 1717, TRB, National Research Council, Washington, D.C., 2000, 76-83.
9. Guidici P.: Applied Data Mining. Statistical Methods for Business and Industry. John Wiley & Sons Ltd., Chichester, 2003.
10. Hand D., Mannila H., Smyth P.: Eksploracja danych. Wydawnictwa Naukowo-Techniczne, Warszawa, 2005, (in Polish).
11. Hanowski R. J., Medina A. L., Wierwille W. W., Lee S. E.: Incident Clustering Diagnostic Approach for Assessing Usability of Intersections and Other Road Sites. In Transportation Research Record: Journal of the Transportation Research Board, No. 1897,Washington D.C., 2004, 173-179.
12. Kim K., Yamashita E.: Using a k-means clustering algorithm to examine patterns of pedestrian involved crashes in Honolulu, Hawai. Journal of Advanced Transportation 41, (1), 2007, 69-89.
13. Kim K., Pant P., Yamashita E. Y.: Hit and Run Crashes: Using Rough Set Analysis with Logistic Regression to Capture Critical Attributes and Determinants. CD-ROM - the TRB 87th Annual Meeting of the Transportation Research Board, Washington D.C., 2008.
14. Korbicz J., Obuchowicz A., Ucinski D. Sztuczne Sieci Neuronowe. Podstawy i Zastosowania. Akademicka Oficyna Wydawniczaj PLJ, Warszawa, 1994, (in Polish).
15. Krzysko M., Wołyński W., Górecki T., Skorzybut M.: Systemy uczące się, rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości. Wydawnictwa Naukowo-Techniczne, Warszawa, 2008, (in Polish).
16. Lachowski J., Nowakowska M.: Wpływ prędkości na skutki zderzeń pojazdów z obiektami. Drogownictwo nr 6, Czerwiec, 2005, 163-165, (in Polish).
17. Larose D. T.: Odkrywanie wiedzy z danych. Wydawnictwo Naukowe PWN, Warszawa, 2006, (In Polish).
18. Major H., Nowakowska M.: Charakterystyka zagrozen brd na odcinkach zamiejskich dróg niższych klas technicznych. Konferencja naukowo-techniczna "Wpływ środków organizacji na bezpieczeństwo ruchu drogowego", Kielce, 12-13 maja 2005, (in Polish).
19. Marakas G.M.: Modern data warehousing, mining, and visualization. Prentice Hall, New Jersey, 2003.
20. Marek T.: Analiza skupień w badaniach empirycznych. PWN, Warszawa, 1985, (in Polish).
21. Milton J., Mannering F.: The relationship among highway geometric, traffic-related elements and motor-vehicle accident frequencies. Transportation 25, Kluwer Academic Publishers, 1998, 395-413.
22. Milton J. C., Shankar V. N., Mannering F. L.: Highway accident severities and the mixed logits model: An exploratory empirical analysis. Accident Analysis and Prevention, No. 40, 2008, 260-266.
23. Nowakowska M., Major H.: Jakosc danych w analizach bezpieczenstwa ruchu drogowego. Międzynarodowe Seminarium GAMBIT 2004, Wydawca: Fundacja Rozwoju Inżynierii Lądowej, Gdańsk, 13-14 maja 2004, 327-333.
24. Nowakowska M.: Poprawność i spójność wewnętrzna danych o zdarzeniach drogowych. VI Międzynarodowe Seminarium Bezpieczeństwa Ruchu Drogowego GAMBIT 2006. Miejsce programu GAMBIT w III Planie BRD Unii Europejskiej. Wydawca: Fundacja Rozwoju Inżynierii Lądowej, Gdańsk, 17-19 maja 2006, 109-120, (in Polish).
25. Nowakowska M.: Finding threat patterns in the interaction between road transportation and pedestrian traffic using market basket analysis. Monografie Zespołu Systemów Eksploatacji PROBLEMS OF MAINTENANCE OF SUSTAINABLE TECHNOLOGICAL SYSTEMS, Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne, Tom II, Warszawa, 2010, 140-162.
26. Osowski S.: Sieci neuronowe do przetwarzanie informacji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2000, (in Polish).
27. Pande A., Abdel-Aty M.: Market basket analysis: A novel way to find patterns in crash data from large jurisdiction. CD-ROM - the TRB 86th Annual Meeting of the Transportation Research Board, Washington D.C., 2007.
28. Pande A., Abdel-Aty M.: Discovering indirect associations in crash data using probe attributes. CD-ROM - the TRB 87th Annual Meeting of the Transportation Research Board, Washington D.C., 2008.
29. SAS Institute Inc.: SAS Technical Report A-108, Cubic Clustering Criterion. Cary, NC: SAS Institute Inc., 1983, 56 pp.
30. SAS/STAT User&apos
s Guide. Version 8. SAS Publishing , Cary N.C., 1999.
31. SAS OnLine documentation 9.1. SAS Institute Inc., Cary, NC, USA, 2003.
32. Stamatiadis N., Jones S., Aultman-Hall L.: Causal Factors for Accidents on Southeastern Low-Volume Rural Roads. In Transportation Research Record: Journal of the Transportation Research Board, No. 1652, Washington D.C., 1999, 111-117.
33. Stutts J. C., Hunter W. W., Pein W.E.: Pedestrian Crash Types: 1990s Update. In Transportation Research Record: Journal of the Transportation Research Board, No. 1538, Washington D.C., 1996, 68-74.
34. Tabachnick B.G., Fidell L.S.: Using Multivariate Statistics. HarperCollinsCollegePublishers, New York, 1996.
35. Wang X., Abdel-aty M.: Analysis of left-turn crash injury severity by conflicting patterns using partial proportional odds models. Accident Analysis and Prevention, No. 40, 2008, 1674-1682.
36. Wong J-T., Chung Y-S.: Analyzing heterogeneous accident data from the perspective of accident occurrence. Accident Analysis and Prevention, No. 40, 2008, 357-367.
37. Wong S. C., Leung B. S. Y., Loo B. P. Y., Hung W. T., Lo H. K.: A qualitative assessment methodology for road safety policy strategies. Accident Analysis and Prevention, No. 36, 2004, 281-293.
38. Zarządzenie nr 635 Komendanta Głównego Policji z dnia 30 czerwca 2006 r. w sprawie metod i form prowadzenia przez Policje statystyki zdarzen drogowych. Warszawa, 2006, (in Polish).
39. http://bus.utk.edu/stat/stat579/Hierarchical%20Clustering%20Methods.pdf
Schmidhammer J. L.: Agglomerative Hierarchical Clustering Methods. University of Tennessee, Department of Statistics, USA, Accessed July 7, 2010.
40. http://lord.uz.zgora.pl:7777/skep/docs/F29571/Gramacki Ploug08.pdf
Gramacki J., Gramacki A.: Wybrane metody redukcji wymiarowosci danych oraz ich wizualizacji. Uniwersytet Zielonogórski, Instytut Informatyki i Elektroniki, Poland, Accessed September 15, 2010.
41. http://www.palgrave-journals.com/jibs/journal/v37/n4/fig tab/8400206t2.html
from the article: Lim L. K. S., Acito F., Rusetski A.: Development of archetypes of international marketing strategy. Journal of International Business Studies, July 1, 2006, Accessed July 7, 2010.
42. http://www.nargund.com/gsu/mgs8040/resource/dm/ClusterPaper.doc
Nargundkar S., Olzer T.J.: An Application of Cluster Analysis in the Financial Services Industry. May & Speh, "Strategic Decision Services", Atlanta, GA, USA, Accessed July 7, 2010.
43. http://www.statsoft.pl/czytelnia/marketing/przykladyzaawans.html
Sagan A.: Przykłady zaawansowanych technik analitycznych w badaniach marketingowych. Akademia Ekonomiczna w Krakowie, Kraków, Poland, Accessed September 15, 2010.
44. ftp://ftp.sas.com/pub/neural/FAQ.html#A Kohonen
How many kinds of Kohonen network exists? And what is k-means? SAS FAQ pages, USA, Accessed July 7, 2010.
45. http://www.cis.hut.fi/somtoolbox/theory/somalgorithm.shtml
Kohonen T.: The Self-Organizing Map (SOM). Finland, Accessed July 7, 2010.