Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[22145] Artykuł:

Enhanced heating surface application in a minichannel flow and the use of the FEM and Trefftz functions for the solution of inverse heat transfer problem

Czasopismo: Experimental Thermal and Fluid Science   Tom: 44, Strony: 23-33
ISSN:  0894-1777
Wydawca:  ELSEVIER SCIENCE INC, 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
Opublikowano: Styczeń 2013
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Magdalena Piasecka orcid logoWMiBMKatedra Mechaniki**5030.00  
Beata Maciejewska orcid logoWZiMKKatedra Informatyki i Matematyki Stosowanej**5030.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 30
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

Flow boiling  Rectangular minichannel  Enhanced heating wall  Liquid crystal thermography  Inverse boundary problem  Trefftz functions 



Abstract:

The paper presents results of flow boiling in a rectangular minichannel of 1.0mm depth and 40mm width, vertically oriented. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Micro-recesses were formed on the selected area or entire heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The first objective is to calculate the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed using Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software. The second objective of the calculations is to evaluate a heat transfer model and numerical approach to solving the inverse boundary problem, and to calculate the heat transfer coefficient at boiling incipience. This problem has been solved by means of the finite element method in combination with Trefftz functions (FEMT). Trefftz functions are used to construct basic functions in Hermite space of the finite element.



B   I   B   L   I   O   G   R   A   F   I   A
1. Kandlikar, S.G.& Grande, W.J., "Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology", Heat Transfer Eng., vol. 25, 2002, p.3-17
2. Piasecka, M.& Maciejewska, B., "The study of boiling heat transfer in vertically and horizontally oriented rectangular minichannels and the solution to the inverse heat transfer problem with the use of the Beck method and Trefftz functions", Exp Therm Fluid Sci, vol. 38, 2012, p.19-32
3. Hozejowska, S.& Piasecka, M.& Poniewski, M.E., "Boiling heat transfer in vertical minichannels. Liquid crystal experiments and numerical investigations", Int. J. Therm. Sci., vol. 48, 2009, p.1049-1059
4. Piasecka, M.& Hozejowska, S.& Poniewski, M.E., "Experimental evaluation of flow boiling incipience of subcooled fluid in a narrow channel", Int. J. Heat Fluid Flow, vol. 25, 2004, p.159-172
5. Alifanow, O.M., "Inverse Heat Transfer Problems", 1994
6. Kurpisz, K.& Nowak, A.J., "Inverse Thermal Problems", 1995
7. Ozisik, M.N.& Orlande, H.R.B., "Inverse Heat Transfer: Fundamentals and Applications", 2000
8. E. Trefftz, Ein Gegenstück zum Ritzschen Verfahren, 2, in: Int. Kongress für Technische Mechanik, Zürich, 1926, pp. 131-137.
9. Kita, E., "Trefftz method: an overview", Adv. Eng. Softw., vol. 24, 1995, p.3-12
10. Zielinski, A.P., "On trial functions applied in the generalized Trefftz method", Adv. Eng. Softw., vol. 24, 1995, p.147-155
11. Herrera, I., "Trefftz method: a general theory", Numer. Methods Partial. Diff. Eq., vol. 16, 2000, p.561-580
12. Cialkowski, M.J.& Frackowiak, A., "Solution of a stationary 2D inverse heat conduction problem by Trefftz method", J. Therm. Sci., vol. 11, 2002, p.148-162
13. Cialkowski, M.J.& Frackowiak, A.& Grysa, K., "Solution of a stationary inverse heat conduction problem by means of Trefftz non-continuous method", Int. J. Heat Mass Transfer, vol. 50, 2007, p.2170-2181
14. Cialkowski, M.J., "New type of basic functions of FEM in application to solution of inverse heat conduction problem", J. Therm. Sci., vol. 11, 2002, p.163-171
15. Kompis, V.& Toma, M.& Zmindak, M.& Handrik, M., "Use of Trefftz functions in non-linear BEM/FEM", Comput. Struct., vol. 82, 2004, p.2351-2360
16. Wang, H.& Qin, Q., "Hybrid FEM with fundamental solutions as trial functions forheat conduction simulation", Acta Mech. Solida Sin., vol. 22, 2009, p.487-498
17. Chin, Y.& Hollingsworth, D.K.& Witte, L.C., "A study of convection in an asymmetrically heated duct using liquid crystal thermography", ASME-HTD, vol. 357-2, 1998, p.63-70
18. D.K. Hollingsworth, Liquid crystal imaging of flow boiling in minichannels, in: Proc. 2nd Int. Conf. on Microchannels and Minichannels, Rochester, USA, 2004, ASME, pp. 57-66.
19. Piasecka, M.& Poniewski, M.E., "Hysteresis phenomena at the onset of subcooled nucleate flow boiling in microchannels", Heat Transfer Eng., vol. 25, 2004, p.44-51