Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Abstract: In this paper, in- and out-of-plane constraint are considered in the process of fracture toughness determination. A three parameter approach-J IC , Q and T z is utilized. The plane strain fracture toughness J IC must be determined experimentally according to valid standards. It is the only quantity measured experimentally except for the classical uniaxial stress-strain curve determined for the material tested. Two additional parameters should be computed numerically using 2D and 3D FE analysis for the structural member which is actually analyzed. The T z function is the generalized Poisson's ratio for elastic-plastic materials. The general model proposed allows for fracture toughness determination in two cases-when one fracture mechanism dominates the fracture process or two or more mechanisms are active simultaneously. To apply the model the fracture toughness for the particular fracture mechanisms should be known. In the paper simple models to determine these quantities are proposed both for cleavage and ductile fracture. In the latter case a distinction is made between fracture mechanisms along the shear lips and in the central part of the specimen.The model proposed has been validated by an experimental programme on single-edge-notched specimens in bending and associated numerical computations.For ductile fracture both in- and out-of-plane constraints play an important role in determination of the fracture toughness of a structural element. The procedure proposed to compute this quantity, although based on simple 'physical' models, provides good qualitative and quantitative estimation of fracture toughness of a structural element at least for the materials tested.
B I B L I O G R A F I A1. Broberg, K.G., "Crack growth criteria and non-linear fracture mechanics", J Mech Phys Solids, vol. 19, 1971, p.407-418
2. Gao, X.& Ruggieri, C.& Dodds, R.H., "Calibration of weibull stress parameters using fracture toughness data", Int J Fract, vol. 92, 1998, p.175-200
3. Gao, X.& Dodds, R.H., "Constraint effects on the ductile-to-cleavage transition temperature of ferritic steels: a Weibull stress model", Int J Fract, vol. 102, 2000, p.43-69
4. Gao, X.& Dodds, R.H.& Tregoning, R.L.& Joyce, J.A.& Link, R.E., "A Weibull stress model to predict cleavage fracture in plates containing surface cracks", Fatigue Fract Eng Mater Struct, vol. 22, 1999, p.481-493
5. Beremin, F.M., "A local criterion for cleavage fracture of a nuclear pressure vessels steel", Metall Trans, vol. 14A, 1983, p.2277-2287
6. Gao, X.& Dodds, R.H., "An engineering approach to assess constraint effects on cleavage fracture toughness", Eng Fract Mech, vol. 68, 2001, p.263-283
7. SINTAP: structural integrity assessment procedure for European industry. Final procedure. Brite-euram project no. BE95-1426, British Steel
1999.
8. O&apos
Dowd, N.P.& Shih, C.F., "Family of crack-tip fields characterized by a triaxiality parameter-II. Fracture applications", J Mech Phys Solids, vol. 40, 5, 1992, p.939-963
9. Williams, M.L., "On the stress distribution at the base of a stationary crack", ASME J Appl Mech, vol. 24, 1957, p.111-114
10. Anderson, T.L., Fracture mechanics-fundamentals and applications, 1995
11. O&apos
Dowd, N.P.& Shih, C.F., "Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields", J Mech Phys Solids, vol. 39, 8, 1991, p.989-1015
12. Rice, J.R.& Rosengren, G.F., "Plane strain deformation near a crack tip in a power-law hardening material", J Mech Phys Solids, vol. 16, 1968, p.1-12
13. Hutchinson, J.W., "Singular behaviour at the end of a tensile crack in a hardening material", J Mech Phys Solids, vol. 16, 1968, p.13-31
14. Ainsworth, R.A.& O&apos
Dowd, N.P., Proceedings of the ASME pressure vessel and piping conference, Minneapolis, MN, USA, 1994
15. O&apos
Dowd, N.P., "Application of two parameters approach in elastic-plastic fracture mechanics", Eng Fract Mech, vol. 52, 3, 1995, p.445-446
16. Guo, W., "Elastoplastic three dimensional crack border field-I. Singular structure of the field", Eng Fract Mech, vol. 46, 1, 1993, p.93-104
17. Guo, W., "Elastoplastic three dimensional crack border field-II. Asymptotic solution for the field", Eng Fract Mech, vol. 46, 1, 1993, p.105-113
18. Guo, W., "Elasto-plastic three-dimensional crack border field-III. Fracture parameters", Eng Fract Mech, vol. 51, 1, 1995, p.51-71
19. Galkiewicz, J.& Graba, M., "Algorytm wyznaczania funkcji σ˜ij(n,θ),ε˜ij(n,θ),u˜j(n,θ),dn(n),In(n), w rozwiazaniu HRR i jego 3d uogolnieniu", Proceedings of IX national conference on fracture mechanics. Kielce, 2003, [in Polish]
20. Neimitz, A., "Dugdale model modification due to the geometry induced plastic constraints", Eng Fract Mech, vol. 67, 2000, p.251-261
21. Broberg, K.B., Cracks and fracture, 1999
22. Berdin, C.& Besson, J.& Bugat, S.& Desmorat, R.& Feyel, F.& Forest, S. et al., "Local approach to fracture", Jacques Besson (Eds.), Ecoles des mines de Paris, 2004
23. Bordet, S.R.& Karstensen, A.D.& Knowles, D.M.& Wiesner, C.S., "A new statistical local criterion for cleavage fracture in steel. Part I. Model presentation. Part II. Application to an offshore structural steel", Eng Fract Mech, vol. 72, 2005, p.435-452, [Part I, see also 453-474 Part II]
24. McClintock, F.A., "A criterion for ductile fracture by growth of holes", J Appl Mech, vol. 4, 1968, p.363-371
25. Rice, J.R.& Tracey, D.M., "On the ductile enlargement of voids in triaxial stress fields", J Mech Phys Solids, vol. 17, 1969, p.201-217
26. Martini B, Mudry F, Pineau A. Ductile rupture of a 508 steel under non radial loading. Eng Fract Mech 1985
22:375-386.
27. ASTM E 1737-96. Standard test method for J-integral characterization of fracture toughness.
28. Galkiewicz J, Graba M. Aproksymowanie rozwiazan 3D przed frontem szczeliny poprzez wprowadzenie wiezow w kierunku grubosci. (Approximation of the 3D stress field in front of the crack using the out-of-plane constraint). In: Techniczno-Rolnicza Akademia, Bydgoszcz, editors. Proceedings of the XX symposjum zmeczenie i mechanika pekania (fatigue and fracture mechanics) in zmeczenie i mechanika pekania 2004. p. 65-71 [in Polish].
29. Anderson, H., "Analysis of a model for void growth and coalescence ahead of a moving crack tip", J Mech Phys Solids, vol. 25, 1977, p.217-233
30. Gurson, A.L., "Continuum theory of ductile rupture by void nucleation and growth: Part I. Yield criteria and flow rules for pourous ductile media", J Eng Mater Technol, vol. 99, 1977, p.2-15
31. Tvergaard, V.& Needleman, A., "Analysis of the cup-cone fracture in a round tensile bar", Acta Metall, vol. 32, 1984, p.157-169
32. Brocks, W.& Cornec, A.& Scheider, I., "Computational aspects of nonlinear fracture mechanics", Milne, I.& Ritchie, R.O.& Karihaloo, B. (Eds.), Comprehensive structural integrity. Fracture of materials from nano to macro, vol. vol. 3, 2003, p.127-209, [Numerical and Computational Metods, Edited by R. de Borst, HA Mang]
33. Yun-Jae, Kim& Jin-Su, Kim& Soo-Man, Cho& Young-Jin, Kim, "3-D constraint effects on J testing and crack tip constraint in M(T), SE(B), SE(T) and C(T) specimens: numerical study", Eng Fract Mech, vol. 71, 2004, p.1203-1218
34. Kumar V, German MD, Shih CF. An engineering approach for elastic-plastic fracture analysis. EPRI report NP-1931. Electric power research institute, Palo Alto, CA
1981.
35. Chueung, S.& Luxmoore, A.R., "A shear lips analysis of concave R-curves for an AlMgZn alloy", Int J Fract, vol. 117, 2002, p.195-205
36. Green, G.& Knott, J.F., "On effects of thickness on ductile crack growth in mild steel", J Mech Phys Solids, vol. 23, 1975, p.167-183
37. ASTM E 1921-03. Standard test method for determination of reference temperature, To for ferritic steels in the transition range.
38. Wallin, K., "The size effect in KIC results", Eng Fract Mech, vol. 22, 1985, p.149-163
39. Ruggieri, C.& Dodds, H.R.& Wallin, K., "Constraint effect on reference temperature, T0 for ferritic steels in the transition region", Eng Fract Mech, vol. 60, 1998, p.19-36
40. Gao, X.& Dodds, R.H., "Constraint effects on the ductile-to-brittle transition temperature of ferritic stres: a Weibull stress model", Eng Fract Mech, vol. 102, 2000, p.43-59
41. Neimitz, A.& Dzioba, I.& Molasy, R.& Graba, M., "Wplyw wiezow na odpornosc na pekanie materialow kruchych (The influence of constraint on fracture toughness of brittle materials)", Zmeczenie, i& Pekania, Mechanika (Eds.), Proceedings of the XX symposjum zmeczenie i mechanika pekania (fatigue and fracture mechanics), 2004, p.262-272, [in Polish]