Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[18573] Artykuł:

Low temperature exothermic effects on cooling of homoionic clays

Czasopismo: Cold Regions Science and Technology   Tom: 68, Zeszyt: 3, Strony: 139-149
ISSN:  0165-232X
Wydawca:  ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Opublikowano: Wrzesień 2011
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Tomasz Kozłowski orcid logoWiŚGiEKatedra Geotechniki i Inżynierii Wodnej *****10030.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 30
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

Soil freezing  Latent heat  DSC  Adsorbed water  Homoionic montmorillonites  Clay minerals 



Abstract:

Results of differential scanning calorimetry (DSC) experiments on homoionic montmorillonites (Ca 2+ , Mg 2+ , Na + , K + ) and Na-kaolinite are reported. The low temperature exothermic peaks were observed on cooling down to -90°C after the initial peak corresponding to the breakdown of supercooling of water in macro- and mezopores. In some experiments, the samples were then warmed to -10°C or -5°C and cooled again to -90°C. According to expectations, the non-equilibrium exothermic peaks were absent in this case, being replaced by a wide peak analogical to that obtained on warming. However, the low temperature exothermic peaks were still observed, but their fields were characteristically cut, proportionally to the extent of the previous warming. The stochastic deconvolution applied to the endothermic peaks obtained on warming allowed to compare the thermal effects corresponding to the cooling and warming. The results gave evidence that the portion of water, solidification of which can be attributed to the low temperature exothermic peaks, on warming melts in a wide temperature range and a separated melting point does not exist.



B   I   B   L   I   O   G   R   A   F   I   A
1. Anderson, D.M.& Tice, A.R., "Low temperature phases of interfacial water in clay-water systems", Soil Sc. Soc. Am. Proc., vol. 35, 1971, p.47-54
2. Anderson, D.M.& Tice, A.R., "Low temperature phase changes in montmorillonite and nontronite at high water contents and high salt contents", Cold Reg. Sci. Technol., vol. 3, 1980, p.139-144
3. Barnes, G.T., "Phase transitions in water sorbed on silica gel", Zeitschrift für Angewandte Mathematik und Physik (ZAMP), vol. 13, 1962, p.533-544
4. Bogdan, A.& Kulmala, M., "DSC study of the freezing and thawing behavior of pure water and binary H2O/HNO3 and H2O/HCl systems adsorbed by pyrogenic silica: implications for the atmosphere", J. Aerosol Sci., vol. 28, Suppl. 1, 1997, p.S507-S508
5. Bogdan, A.& Kulmala, M.& Gorbunov, B.& Kruppa, A., "NMR study of phase transitions in pure water and binary H2O/HNO3 films adsorbed on surface of pyrogenic silica", J. Colloid Interface Sci., vol. 177, 1996, p.79-87
6. Bronfenbrener, L.& Korin, E., "Experimental studies of water crystallization in porous media", Chemical Eng. Proc., vol. 41, 2002, p.357-363
7. Brun, M.& Lallemand, A.& Quinson, J.-F.& Eyraud, Ch., "A new method for the simultaneous determination of the size and the shape of pores: the thermoporometry", Thermochim. Acta, vol. 21, 1977, p.59-88
8. Charsley, E.L.& Laye, P.G.& Palakollu, V.& Rooney, J.J.& Joseph, B., "DSC studies on organic melting point temperature standards", Thermochim. Acta, vol. 446, 2006, p.29-32
9. Darrow, M.M.& Huang, S.L.& Akagawa, S., "Adsorbed cation effects on the frost susceptibility of natural soils", Cold Reg. Sci. Technol., vol. 55, 2009, p.263-277
10. Efimov, S.S., "Temperature dependence of the heat of crystallization of water", J. Eng. Phys. Thermophys., vol. 49, 1985, p.1229-1233
11. Fabbri, A.& Fen-Chong, T.& Coussy, O., "Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials", Cold Reg. Sci. Technol., vol. 44, 2006, p.52-66
12. Fen-Chong, T.& Fabbri, A., "Freezing and thawing porous media: experimental study with a dielectric capacitive method", C. R. Mecanique, vol. 333, 2005, p.425-430
13. Fung Kee Fung, C.A.& Burke, M.F., "Investigation of the behaviour of water on the surface of modified silica using differential scanning calorimetry", J. Chromatogr. A, vol. 752, 1996, p.41-57
14. Gun&apos
ko, V.M.& Turov, V.V.& Turov, A.V.& Zarko, V.I.& Gerda, V.I.& Yanishpolskii, V.V.& Berezovska, I.S.& Tertykh, V.A., "Behaviour of pure water and water mixture with benzene or chloroform adsorbed onto ordered mesoporous silicas", Cent. Eur. J. Chem., vol. 5, 2007, p.420-454
15. Gun&apos
ko, V.M.& Turov, V.V.& Kozynchenko, O.P.& Palijczuk, D.& Szmigielski, R.& Kerus, S.V.& Borysenko, M.V.& Pakhlov, E.M.& Gorbik, P.P., "Characteristics of adsorption phase with water/organic mixtures at a surface of activated carbons possessing intraparticle and textural porosities", Appl. Surf. Sci., vol. 254, 2008, p.3220-3231
16. Gun&apos
ko, V.M.& Turov, V.V.& Zarko, V.I.& Goncharuk, E.V.& Turov, A.A., "Regularities in the behaviour of water confined in adsorbents and bioobjects studied by 1H NMR spectroscopy and TSDC methods at low temperatures", Colloids Surf. A, vol. 336, 2009, p.147-158
17. Hatakeyama, H.& Hatakeyama, T., "Interaction between water and hydrophilic polymers", Thermochim. Acta, vol. 308, 1998, p.3-22
18. Horiguchi, K., "Determination of unfrozen water content by DSC", Proc.4th Int. Symp, Ground Freezing, Sapporo, vol. 1, 1985, p.33-38
19. Iiyama, T.& Nishikawa, K.& Suzuki, T.& Kaneko, K., "Study of the structure of a water molecular assembly in a hydrophobic nanospace at low temperature with in situ X-ray diffraction", Chem. Phys. Lett., vol. 274, 1997, p.152-158
20. Kozlowski, T., "A comprehensive method of determining the soil unfrozen water curves
1: Application of the term of convolution", Cold Reg. Sci. Technol., vol. 36, 2003, p.71-79
21. Kozlowski, T., "A semi-empirical model for phase composition of water in clay-water systems", Cold Reg. Sci. Technol., vol. 49, 2007, p.226-236
22. Maklakov, A.I.& Derinovskii, V.S., "Nuclear magnetic resonance study of polymer-low-molecular-weight substance systems", Russ. Chem. Rev., vol. 48, 1979, p.404-417
23. Nevzorov, A.N., "Internal mechanism of metastable liquid water crystallization and its effects on intracloud processes", Izv. Atmos. Oceanic Phys., vol. 42, 2006, p.765-772
24. Price, D.M.& Bashir, Z., "A study of the porosity of water-plasticised polyacrylonitrile films by thermal analysis and microscopy", Thermochim. Acta, vol. 249, 1995, p.351-366
25. Staszczuk, P.& Jaroniec, M.& Gilpin, R.K., "Thermoanalytical studies of water films on porous silicas at subambient and elevated temperatures", Thermochim. Acta, vol. 287, 1996, p.225-233
26. Stepkowska, E.T.& Pérez-Rodríguez, J.L.& Maqueda, C.& Starnawska, E., "Variability in water sorption and in particle thickness of standard smectites", Appl. Clay Sci., vol. 24, 2004, p.185-199
27. Swenson, J.& Bergman, R.& Longeville, S., "Experimental support for dynamic transition of confined water", J. Non-Cryst. Solids, vol. 307-310, 2002, p.573-578
28. Thomas, L.C., "Use of multiple heating rate DSC and modulated temperature DSC to detect and analyze temperature-time dependent transitions in materials", Am. Lab., vol. 33, 2001, p.26-29
29. Turov, V.V.& Leboda, R., "Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents", Adv. Colloid Interface Sci., vol. 79, 1999, p.173-211
30. Turov, V.V.& Chodorowski, S.& Leboda, R.& Skubiszewska-Zieba, J.& Brei, V.V., "Thermogravimetric and 1H NMR spectroscopy studies of water on silicalites", Colloids Surf. A, vol. 158, 1999, p.363-373
31. Watanabe, K.& Mizoguchi, M., "Amount of unfrozen water in frozen porous media saturated with solution", Cold Reg. Sci. Technol., vol. 34, 2002, p.103-110
32. Weiss, C.A.& Gerasimowicz, W.V., "Interaction of water with clay minerals as studied by 2H nuclear magnetic resonance spectroscopy", Geochim. Cosmochim. Acta, vol. 60, 1996, p.265-275
33. Yoshikawa, K.& Overduin, P.P., "Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors", Cold Reg. Sci. Technol., vol. 42, 2005, p.250-256