Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[18043] Artykuł:

Application of thermoporometry based on convolutive DSC to investigation of mesoporosity in cohesive soils

Czasopismo: Archives of Hydro-Engineering and Environmental Mechanics   Tom: 57, Zeszyt: 3-4, Strony: 199-218
ISSN:  1231-3726
Opublikowano: 2010
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Tomasz Kozłowski orcid logoWiŚGiEKatedra Geotechniki i Inżynierii Wodnej *****333.00  
Edyta Grobelska orcid logoWiŚGiEKatedra Geotechniki i Inżynierii Wodnej *****333.00  
Izabela Babiarz33.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 6


Web of Science LogoYADDA/CEON    
Keywords:

pore distribution  thermoporometry  DSC Differential Scanning Calorimetry  montmorillonite  cohesive soils 



Abstract:

In the method of thermoporometry, the characterization of pore space is done by analysis of thermal effects associated with freezing and melting of a liquid in the pores of the material under investigation. Thermoporometry seems particularly well suited to studies of wet porous samples in cases where the process of drying itself is able to destroy the original microstructure, as is the cohesive soils containing montmorillonite. In the paper, a variant of thermoporometry is given in which the blurred calorimetric peak is processed by use of a stochastic-convolutive analysis. As a result, a "sharp" thermogram of real thermal effects is obtained which can be easily transformed into a pore distribution curve. The preliminary results, obtained for samples of three monoionic montmorillonites at different water contents, indicate a greater resolution, sensitivity and precision than the classical thermoporometry using an unprocessed DSC signal. Phenomena corresponding to swelling have been detected in two individual regions on the differential pore distribution curves. The first is a dense spectrum for pores less than 15 nm. The second is a single peak for pores greater than 15 nm. Between the two regions the distribution decays to zero. Apparently, the point of the single peak maximum depends on the total water content, shifting rightward with increasing w. For the region below 20 nm, a strong effect of the kind of exchangeable cation can be observed. The results suggest swelling in the form with bivalent cations (Ca-montmorillonite) and contraction in the form with monovalent cations (Na- and K-montmorillonite).



B   I   B   L   I   O   G   R   A   F   I   A
1. Bergaya F., Lagaly G. (2001) Surface modification of clay minerals, Applied Clay Science, 19, 1-30.
2. Beurroies I., Denoyel R., Llewellyn P., Rouquerol J. (2004) A comparison between melting-solidification and capillary condensation hysteresis in mesoporous materials: Application to the interpretation of thermoporometry data, Thermochimica Acta, 421, 11-18.
3. Brun M., Lallemand A., Quinson J.-F., Eyraud Ch. (1977) A new method for the simulta-neous determination of the size and the shape of pores: the thermoporometry, Thermochimica Acta, 21, 59-88.
4. Fabbri A., Fen-Chong T., Coussy O. (2006) Dielectric capacity, liquid water content, and pore structure of thawing-freezing materials, Cold Regions Science and Technology, 44, 52-66.
5. Hemminger W., H¨ohne G. (1984) Calorimetry: Fundamentals and Practice, Verlag Chemie GmbH.
6. Homshaw L. G. (1980) Freezing and melting temperature hysteresis of water in porous materials: Application to the study of pore form, European Journal of Soil Science, 31, 399-414.
7. Homshaw L. G., Cambier P. (1980) Wet and dry pore size distribution in a kaolinitic soil before and after removal of iron and quartz, European Journal of Soil Science, 31, 415-428.
8. Horiguchi K. (1985) Determination of unfrozen water content by DSC, Proc. 4th Int. Symp. Ground Freezing, Sapporo, A. Balkema, Rotterdam, 1, 33-38.
9. Kaneko K. (1994) Determination of pore size and pore size distribution, Part 1:Adsorbents and catalysts, Journal of Membrane Science, 96, 59-89.
10. Kozlowski T. (2003) A comprehensive method of determining the soil unfrozen water curves, Part 1: Application of the term of convolution, Cold Regions Science and Technology, 36, 71-79.
11. Leofanti G., Padovan M., Tozzola G., Venturelli B. (1998) Surface area and pore texture of catalysts, Catalysis Today, 41, 207-219.
12. Montes G., Duplay J., Martinez L., Mendoza C. (2003) Swelling-shrinkage kinetics of MX80 bentonite, Applied Clay Science, 22, 279-293.
13. Pires L. F., Bacchi O. O. S., Reichardt K. (2005) Gamma ray computed tomography to evaluate wetting/ drying soil structure changes, Nuclear Instruments and Methods in Physics Research, B 229, 443-456.
14. Price D. M., Bashir Z. (1995) A study of the porosity of water plasticised polyacrylonitrile films by thermal analysis and microscopy, Thermochimica Acta, 249, 351-366.
15. Romero E., Gens A., Lloret A. (1999), Water permeability, water retention and microstructure of unsaturated compacted Boom clay, Engineering Geology, 54, 117-127.
16. Rouquerol J., Avnir D., Fairbridge C. W., Everett D. H., Haynes J. H., Pernicone N., Ramsay J. D. F., Sing K. S. W., Unger K. K. (1994) Recommendations for the characterization of porous solids (Technical Report), Pure & Applied Chemistry, 66 (8), 1739-1758.
17. Titulaer M. K., van Miltenburg J. C., Jansen J. B. H., Geus J. W. (1995), Thermoporometry applied to hydrothermally aged sillica hydrogels, Recl. Trav. Chim. Pays-Bas, 114, 361-370.
18. Tuller M., Or D. (2003) Hydraulic functions for swelling soils: Pore scale considerations, Journal of Hydrology, 272, 50-71.
19. Usyarov O. G. (2003), Experimental study of small-scale spatial variation in filtration coefficient using tracer method, Colloid Journal, 65, 100-104.
20. Velde B., Moreau E., Terribile F. (1996) Pore networks in an Italian vertisole: Quantitative characterization by two dimensional image analysis, Geoderma, 72, 271-285.
21. Yang Tao, Xiao-DongWen, Junfen Li, Liming Yang (2006) Theoretical and experimental investigations on the structures of purified clay and acid-activated clay, Applied Surface Science, 252, 6154-6161.
22. Zuber B., Marchand J. (2000) Modeling the deterioration of hydrated cement systems exposed to frostaction, Part 1: Description of the mathematical model, Cement and Concrete Research, 30, 1929-1939.