Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[16670] Artykuł:

Separation of non-periodic and periodic 2D profile features using B-Spline functions

Czasopismo: Metrology and Measurement Systems   Tom: 22, Zeszyt: 2, Strony: 289-302
ISSN:  0860-8229
Wydawca:  POLSKA AKAD NAUK, POLISH ACAD SCIENCES, PL DEFILAD 1, WARSZAWA, 00-901, POLAND
Opublikowano: Czerwiec 2015
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Dariusz Janecki orcid logoWMiBMKatedra Automatyki i Robotyki*336.67  
Leszek Cedro orcid logoWMiBMKatedra Automatyki i Robotyki*336.67  
Jarosław Zwierzchowski orcid logoWMiBMKatedra Automatyki i Robotyki*336.67  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 20
Klasyfikacja Web of Science: Article


DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

profile filtering  B-spline functions  roundness  roughness 



Abstract:

The form, waviness and roughness components of a measured profile are separated by means of digital filters. The aim of analysis was to develop an algorithm for one-dimensional filtering of profiles using approximation by means of B-splines. The theory of B-spline functions introduced by Schoenberg and extended by Unser et al. was used. Unlike the spline filter proposed by Krystek, which is described in ISO standards, the algorithm does not take into account the bending energy of a filtered profile in the functional whose minimization is the principle of the filter. Appropriate smoothness of a filtered profile is achieved by selecting an appropriate distance between nodes of the spline function. In this paper, we determine the Fourier transforms of the filter impulse response at different impulse positions, with respect to the nodes. We show that the filter cutoff length is equal to half of the node-to-node distance. The inclination of the filter frequency characteristic in the transition band can be adjusted by selecting an appropriate degree of the B-spline function. The paper includes examples of separation of 2D roughness, as well as separation of form and waviness of roundness profiles.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Krystek, M. (1996). Form filtering by splines. Measurement, 18(1), 9-15.
[2] Krystek, M. (1996). Discrete L-spline filtering in roughness measurements. Measurement, 18(2), 129-138
[3] Janecki, D. (2013). A two-dimensional isotropic spline filter. Prec. Eng., 37(3), 948-965.
[4] Seewig, J. (2005). Linear and robust Gaussian regression filters. J. Phys. Conf. Ser., 13, 254-257.
[5] Brinkmam, S., Bodschwinna, H., Lemke, H.W. (2001). Accessing roughness in three-dimensions using Gaussian regression filtering. Int. J. Machine Tools Manuf., 41(13-14), 2153-2161.
[6] ISO/TS 16610-22:2006. Geometrical Product Specifications (GPS) - Filtration - Part 22, Linear Profile Filters, Spline Filters.
[7] ISO/TS 16610-31:2010. Geometrical product specifications (GPS) - Filtration - Part 31, Robust profile filters, Gaussian regression filters.
[8] Dobrzanski, P, Pawlus, P. (2010). Digital filtering of surface topography. Part I. Separation of one-process surface roughness and waviness by Gaussian convolution, Gaussian regression and spline filters. Prec. Eng., 34(3), 647-650.
[9] Zhang, H., Yuan, Y., Piao, W. (2010). A universal spline filter for surface metrology. Measurement, 43(10), 1575-1582.
[10] Hanada, H., Saito, T., Hasegawa, M., Yanagi, K. (2008). Sophisticated filtration technique for 3D surface topography data of rectangular area. Wear, 264(5-6), 422-427.
[11] Schoenberg, I.J. (1969). Cardinal interpolation and spline functions. J. Approx. Theory, 2(2), 167-206.
[12] Unser, M., Aldroubi, A., Eden, M. (1993). B-spline signal processing. Part I - Theory. IEEE Trans. Signal Processing, 41(2), 821-848.
[13] Adamczak, S., Makieła, W. (2011). Analyzing variations in roundness profile parameters during the wavelet decomposition process using the Matlab environment. Metrol. Meas. Syst., 18(1), 25-34.
[14] Stępień, K., Makieła, W. (2013) An analysis of deviations of cylindrical surfaces with the use of wavelet transform. Metrol. Meas. Syst., 20(1), 139-150.
[15] Janecki, D. (2009). A generalized L2-spline filter. Measurement, 42(6), 937-943.