Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1286
Publikacje
Pomoc (F2)
[141060] Artykuł:

Behaviour of vapour bubbles in an acoustic field

Czasopismo: Applied Thermal Engineering   Zeszyt: 128495, Strony: 1-30
ISSN:  1359-4311
Opublikowano: 2025
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Anatoliy Pavlenko orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka50140.00140.00  
Ryszard Szwaba Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka50.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

The model of cavitation in an acoustic field can be used to assess the behavior of cavitation bubbles. 


Keywords:

The model of cavitation in an acoustic field can be used to assess the behavior of cavitation bubbles. 



Streszczenie:

This paper presents a numerical investigation into the validity of certain predictions arising from asymptotic theory, specifically concerning the existence of dual resonance radii and the upper bound on bubble size for a given acoustic amplitude and frequency. The findings indicate that a diminutive vapour bubble situated within a sound field of adequate amplitude undergoes rapid growth attributable to resonance. Subsequently, the bubble continues to expand at a markedly reduced rate, seemingly without limits. Consequently, resonance phenomena are observed to be influential for only a limited number of acoustic cycles, whereas the attainment of the predicted size limit (if indeed reached) necessitates a significantly greater number of cycles, far exceeding several tens of thousands. Furthermore, the study reveals that the growth or collapse of certain small bubbles is contingent on the phase of the applied sound field. To facilitate the numerical evaluation of these observed effects, a corresponding mathematical model is proposed.




Abstract:

This paper presents a numerical investigation into the validity of certain predictions arising from asymptotic theory, specifically concerning the existence of dual resonance radii and the upper bound on bubble size for a given acoustic amplitude and frequency. The findings indicate that a diminutive vapour bubble situated within a sound field of adequate amplitude undergoes rapid growth attributable to resonance. Subsequently, the bubble continues to expand at a markedly reduced rate, seemingly without limits. Consequently, resonance phenomena are observed to be influential for only a limited number of acoustic cycles, whereas the attainment of the predicted size limit (if indeed reached) necessitates a significantly greater number of cycles, far exceeding several tens of thousands. Furthermore, the study reveals that the growth or collapse of certain small bubbles is contingent on the phase of the applied sound field. To facilitate the numerical evaluation of these observed effects, a corresponding mathematical model is proposed.