Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[138800] Artykuł:

The Evolution of Machine Learning in Vibration and Acoustics: A Decade of Innovation (2015–2024)

Czasopismo: Applied Sciences   Tom: 15, Zeszyt: 12, Strony: 6549
ISSN:  2076-3417
Opublikowano: Czerwiec 2025
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jacek Wilk-Jakubowski orcid logo WEAiIKatedra Systemów Informatycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne25100.00100.00  
Łukasz Pawlik orcid logo WEAiIKatedra Systemów Informatycznych *Niezaliczony do "N"Informatyka techniczna i telekomunikacja25100.00100.00  
Damian Frej orcid logo WMiBMKatedra Pojazdów Samochodowych i Transportu*Takzaliczony do "N"Inżynieria mechaniczna25100.00100.00  
Grzegorz Wilk-Jakubowski Niespoza "N" jednostkiNauki o zarządzaniu i jakości25.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

vibration analysis  acoustic signal processing  machine learning  convolutional neural networks  health management  condition monitoring  non-destructive testing  damage detection  diagnostics 



Abstract:

The increasing demands for the reliability of modern industrial equipment and structures necessitate advanced techniques for design, monitoring, and analysis. This review article presents the latest research advancements in the application of machine learning techniques to vibration and acoustic signal analysis from 2015 to 2024. A total of 96 peer-reviewed scientific publications were examined, selected using a systematic Scopus-based search. The main research areas include processes such as modeling and design, health management, condition monitoring, non-destructive testing, damage detection, and diagnostics. In the context of these processes, a review of machine learning techniques was conducted, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), autoencoders, support vector machines (SVMs), decision trees (DTs), nearest neighbor search (NNS), K-means clustering, and random forests. These techniques were applied across a wide range of engineering domains, including civil infrastructure, transportation systems, energy installations, and rotating machinery. Additionally, this article analyzes contributions from different countries, highlighting temporal and methodological trends in this field. The findings indicate a clear shift towards deep learning-based methods and multisensor data fusion, accompanied by increasing use of automatic feature extraction and interest in transfer learning, few-shot learning, and unsupervised approaches. This review aims to provide a comprehensive understanding of the current state and future directions of machine learning applications in vibration and acoustics, outlining the field’s evolution and identifying its key research challenges and innovation trajectories.