Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
Nie podano kosztów publikacji ! (W celu uzupełnienia skontaktuj się z Dyrektorem Dyscypliny)

[138310] Artykuł:

Sustainable Increase in Thermal Resistance of Window Construction: Experimental Verification and CFD Modelling of the Air Cavity Created by a Shutter

Czasopismo: Materials   Tom: 18(12),, Zeszyt: 2702, Strony: 1-32
ISSN:  1996-1944
Opublikowano: 2025
Liczba arkuszy wydawniczych:  1.50
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Borys Basok Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Volodymyr Novikov Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Anatoliy Pavlenko orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka14.00.00  
Hanna Koshlak orcid logo WiŚGiEKatedra Fizyki Budowli i Energii Odnawialnej*Takzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka14.00.00  
Svitlana Goncharuk Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Oleksii Shmatok Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  
Dmytro Davydenko Niespoza "N" jednostkiInżynieria środowiska, górnictwo i energetyka14.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 0


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

double-glazed units  radiative heat transfer  thermal resistance  shutters  energy efficiency  sustainable building envelopes  CFD simulation  experimental analysis 


Keywords:

double-glazed units  radiative heat transfer  thermal resistance  shutters  energy efficiency  sustainable building envelopes  CFD simulation  experimental analysis 



Streszczenie:

This study investigates, both experimentally and theoretically, the impact of incorporating window shutters on the thermal resistance of double-glazed window units, employing computational fluid dynamics (CFD) modelling. The integration of shutters, whether installed internally or externally, introduces an additional air layer that significantly influences heat transfer between indoor and outdoor environments. This effect on the thermal performance of the transparent structure was analysed through experimental measurements under real operating conditions and numerical simulations involving fluid dynamics and energy equations for the air gaps, alongside heat conduction equations for the solid components. Fourth-kind boundary conditions, considering both radiative and conductive components of the total heat flux emanating from the building’s interior, were applied at the solid–gas interfaces. The simulation results, comparing heat transfer through double-glazed windows with and without shutters, demonstrate a substantial increase in thermal resistance, ranging from 2 to 2.5 times, upon shutter implementation. These findings underscore the effectiveness of employing shutters as a strategy to enhance the energy efficiency of windows and, consequently, the overall energy performance of buildings. This research contributes to the advancement of sustainable materials for engineering applications by providing insights into the optimisation of thermal performance in building envelopes.




Abstract:

This study investigates, both experimentally and theoretically, the impact of incorporating window shutters on the thermal resistance of double-glazed window units, employing computational fluid dynamics (CFD) modelling. The integration of shutters, whether installed internally or externally, introduces an additional air layer that significantly influences heat transfer between indoor and outdoor environments. This effect on the thermal performance of the transparent structure was analysed through experimental measurements under real operating conditions and numerical simulations involving fluid dynamics and energy equations for the air gaps, alongside heat conduction equations for the solid components. Fourth-kind boundary conditions, considering both radiative and conductive components of the total heat flux emanating from the building’s interior, were applied at the solid–gas interfaces. The simulation results, comparing heat transfer through double-glazed windows with and without shutters, demonstrate a substantial increase in thermal resistance, ranging from 2 to 2.5 times, upon shutter implementation. These findings underscore the effectiveness of employing shutters as a strategy to enhance the energy efficiency of windows and, consequently, the overall energy performance of buildings. This research contributes to the advancement of sustainable materials for engineering applications by providing insights into the optimisation of thermal performance in building envelopes.